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Preface

WATER is the most abundant compound on the surface of the Earth
and it is the principal constituent of all living organisms. The oceans
alone contain 1.4 X 1024 grammes or roughly 320000000 cubic miles of
water. Another 0.8 x 1024 grammes is held within the rocks of the Earth's
crust in the form of water of hydration. The human body is about
65 per cent water by weight, some tissues such as brain and lung being
composed of nearly 80 per cent water.

Men of science since Thales have recognized the importance of water
in both our internal and external environments, and have studied this
substance extensively. Our purpose in writing this book is to sum-
marize from the voluminous literature on water some of the most
important and reliable data on this substance and to present the theories
that are most effective in correlating these data. We have made no
attempt to produce a compendium of data such as that compiled by
Dorsey (1940), but we have tried instead to relate the properties of
water to its structure. Some important properties of water, such as
thermal conductivity and surface tension of the liquid, are not discussed
because they have not yet contributed to our understanding of the
liquid structure; other properties such as infra-red and Raman spectra
are covered in detail because they reveal so much about the structures
of ice and liquid water. Though some data on both electrolyte and non-
electrolyte solutions are undoubtedly helpful in understanding the
structure of water, we have not ventured into the vast literature con-
cerning aqueous solutions.

Realizing that scientists in many fields are interested in water, we
have included in the text some background material in physical chemistry
which is required in order to follow the discussions of a number of topics.
We believe that nearly all material in this book should be accessible
to those who have had a first course in physical chemistry.

We have inserted an Addendum at the end of the text; it lists
a number of very recent articles on the structure and properties of
water, and a few articles overlooked by us during preparation of the
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main body of the text. The articles are grouped according to the
sections of the text to which they correspond.

During the preparation of this manuscript we have had the pleasure
of discussing many interesting questions about water with a large
number of friends and colleagues. These people are too numerous to
mention individually, but we wish to thank in particular Professor S. I.
Chan, Professor C. A. Coulson, Professor R. E. Dickerson, Professor
B. Kamb, Dr. J. J. Kozak, Professor R. M. Pitzer, Dr. L. Salem, and
Dr. G. E. Walrafen. We also wish to thank Lucy Eisenberg for a great
deal of expert editorial advice.

DAVID EISENBERG
WALTER KAUZMANN

June 1968

Acknowledgements

THANKS are due to the following for permission to reproduce the material
indicated, or to use it in preparing illustrative material.

Professor R. F. W. Bader (Figs. 1.6, l.8a, and 1.9); Professor K. E. Bett
(Fig. 4.21); Professor P. W. Bridgman (Fig. 4.166); Professor R. Brill
(Fig. 3.10); Dr. B. N. Brockhouse (Fig. 4.20); Professor C. A. Coulson
(Fig. 1.4); Professor J. O. Hirschfelder (Fig. 1.36); Professor B. Kamb
(Figs. 3.56, 3.7, 3.8. 3.9, and 3.11); Dr. L. D. Kislovskii (Fig. 4.18); Dr. K.
Kume (Fig. 3.21); Dr. I. M. Mills (Fig. 1.1); Dr. A. H. Narten (Fig. 4.3);
Professor G. Nemethy (Fig. 4.5); Dr. P. G. Owston (Figs. 3.1 and 3.3);
Professor G. C. Pimentel (Fig. 3.2); Professor J. A. Pople (Fig. 4.8); Professor
J. C. Slater (Figs. 2.6, 2.9, and 2.10); Dr. T. T. Wall (Figs. 4.2, 3a, b and
4.24); Dr. G. E. Walrafen (Figs. 4.22a, 6, 4.23c, d, and 4.25); Dr. B. E.
Warren (Fig. 4.6); Dr. E. Whalley (Figs. 3.14, 3.15, and 3.20); Professor
A. H. Wilson (Fig. 2.11); Professor M. W. Zemansky (Fig. 3.4); G. Bell
and Sons (Fig. 4.166); Cambridge University Press (Fig. 2.11); Elsevier
Publishing Company (Fig. 1.1); W. H. Freeman and Company (Fig. 3.2);
McGraw Hill Publishing Company (Figs. 2.6, 2.9, 2.10, 3.4); John Wiley and
Sons Incorporated (Fig. 1.36); Acta Crystallographica (Figs. 3.56 and 3.7);
Advances in Physics (Figs 3.1 and 3.3); Journal of the American Chemical
/Society (Figs. 1.8a, 1.86, 1.9); Angewandte Ghemie (Fig. 3.10); Canadian
Journal of Chemistry (Fig. 1.6); Journal of Chemical Physics (Figs. 3.14,
3.15, 3.20, 4.5, 4.6, 4.22a, 6, 4.23a, 6, 4.24, 4.25); Discussions of the Faraday
Society (Fig. 4.3); Nature (Fig. 4.21); Oak Ridge National Laboratory Report
(Fig. 4.4); Optics and Spectroscopy (Fig. 4.18); Journal of Physical Society,
Japan (Figs. 3.21 and 4.20); Proceedings of the National Academy of Science
of the U.S. (Fig. 3.9); Proceedings of the Royal Society (Fig. 4.8); Science
(Fig. 3.8).



Contents

GLOSSARY OF NOTATION

1.

2.

3.

THE WATER MOLECULE
1.1. The water molecule: description based on experiment

(a) Composition
(b) Energetics of formation
(c) Molecular dimensions
(d) Molecular vibrations
(e) Electrical properties
(/) Comparison of molecular energies

1.2. The water molecule: description based on theory
(a) Electrostatic models
(6) Molecular orbital theory
(c) Electron density distribution
(d) Accurate wave functions and the calculation of physical

properties
(e) The charge distribution: a summary

THE REAL VAPOUR
2.1. Forces between water molecules

(a) Origin and description of the forces
(b) Virial coefficients
(c) Forces between water molecules: a summary

2.2. Thermodynamic properties
(a) Pressure-volume—temperature relations
(6) Thermal energy

ICE

3.1. Structure of ice I
(a) Positions of the oxygen atoms
(6) Positions of the hydrogen atoms
(c) Amplitudes of thermal vibration
(d) Structure of ice I: a summary

3.2. Structures of ice polymorphs
(a) Ices II, III, and V
(b) Ices VI, VII, and VIII
(c) Vitreous ice and ice Ic
(d) Structural characteristics of ice polymorphs: a summary

xi

1
1
1
2
4
6

12
17

21
21
23
27

31
34

36

36
36
48
56

58
58
65

71

71
71
74
77
77

79
79
87
89
91



viii CONTENTS

3.3. Thermodynamic properties
(a) Phase relations
(6) Thermal energy
(c) P-V-T data for ice I

3.4. Electrical properties and self-diffusion
(a) Dielectric constant and dipole moment
(6) Dielectric polarization and relaxation
(c) Electrical conductivity
(d) Self-diffusion

3.5. Spectroscopic properties
(a) Vibrational spectrum of ice I
(6) Vibrational spectra of ice polymorphs
(c) Nuclear magnetic resonance

3.6. Hydrogen bonding
(a) Experimental energy of hydrogen bonding
(6) Potential functions for hydrogen-bonded molecules
(c) Theoretical description of the hydrogen bond in ice
(d) The properties of ice as determined by hydrogen bonds: a

summary

4. PROPERTIES OF LIQUID WATER

4.1. Introduction
(a) Meaning of the term 'structure' as applied to liquid water
(b) Liquid structure and experimental techniques

4.2. X-ray diffraction
(a) Radial distribution functions
(6) Interpretation of the radial distribution function in terms of

V-structures

4.3. Thermodynamic properties
(a) Thermal energy
(6) Pressure-volume—temperature relations

4.4. Static dielectric constant and NMR chemical shift
(a) Static dielectric constant
(6) NMR chemical shift

4.5. Optical properties
(a) Refractive index
(b) Light scattering

4.6. Properties depending on the rates of molecular displacements
(a) Dielectric relaxation
(b) Relaxation of nuclear magnetism
(c) Self-diffusion
(d) Viscosity
(e) Ionic dissociation and migration
(f) Molecular displacements: a summary

92
92
98

102

105
105
112
118
120

121
121
132
135

137
137
141
143

148

150

150
150
154

155
155

163

171
172
182

189
189
194

197
197
200

205
206
214
217
222
224
227



CONTENTS

4.7. Vibrational spectroscopy
(a) Identification of spectral bands
(6) The O-H and O-D stretching bands
(c) Intramolecular vibrations
(d) Overtone and combination bands

4.8. The structure of water: conclusions based on properties
(a) Problems of describing the properties of water in terms of

hydrogen bonds
(6) The V-structure of water: a summary
(c) The D-structure of water: a summary

5. MODELS FOR LIQUID WATER
5.1. Small-aggregate models
5.2. Mixture and interstitial models

(a) Basic premiss
(6) Details of several models
(c) Consistency of mixture models with experimental data

5.3. Distorted hydrogen-bond models

A D D E N D U M

BIBLIOGRAPHY

AUTHOR INDEX

SUBJECT INDEX

ix

228
229
231
242
245

246

246
250
251

254

255

256
256
257
264

265

268

271

283

289



This page intentionally left blank 



Glossary of Notation

A Helmholtz free energy
A Angstrom unit = 10-8 cm
Cp Heat capacity at constant pressure
Cy Heat capacity at constant volume
c' Velocity of light
D Coefficient of self-diffusion
D Debye unit = 10-18 e.s.u. cm
E Internal energy
e Protonic charge
e Base of natural logarithms = 2.71828
e.s.u. Electrostatic unit of charge
e.u. Entropy unit = cal mol-l deg-1

G Gibbs free energy
g Kirkwood correlation parameter
H Enthalpy
h Planck's constant
I Moment of inertia
k Boltzmann's constant. Various force constants
kbar Kilobar = 109 dyn cm -2

m Molecular dipole moment in a condensed phase
N Avogadro's number
N* Number of molecules per unit volume
n Refractive index
P Pressure
Q Quadrupole moment
R Gas constant
S Entropy
T Temperature, in °K unless stated otherwise
t Temperature in °C. Time
U Potential energy
V Molar volume
v Vibrational quantum number

Electrostatic potential
XA Mole fraction of component A

Molecular polarizability
Coefficient of cubical expansion
Coefficient of adiabatic compressibility
Coefficient of isothermal compressibility
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Chemical shift
Dielectric constant
Static dielectric constant
High-frequency dielectric constant
Coefficient of viscosity

K Direct current conductivity
Dipole moment of isolated molecule

v Vibrational mode or frequency
Bulk density
Local density

Relaxation times for motions of water molecules; see Section 4.1 (a)

Dielectric relaxation time
X Magnetic susceptibility

Molecular orbital
Molecular wave function

Notations pertaining to the water molecule and
hydrogen bond

r O-H bond length
2a H-O-H bond angle
R Separation of oxygen nuclei of neighbouring water molecules
180° — 6 Hydrogen bond angle



1. The Water Molecule

IN order to interpret the properties of steam, ice, and liquid water,
we must understand the water molecule. In this chapter we describe
an isolated water molecule in two complementary ways: first in terms
of properties that have been deduced from experiments, and second in
terms of properties deduced from the electronic theory of chemical
valence. The first group of properties is based on measurements made
on water vapour at sufficiently low pressures or high temperatures to
ensure that interactions between molecules are largely absent. These
properties include, for example, the relative positions of the nuclei,
and the polarity of the molecule as a whole; but they do not include much
information about the disposition of electronic charge within the
molecule. Thus for a more detailed picture of the water molecule we
must turn to the description given by theory. This provides such details
as the shape of the electronic charge cloud of water, and an indication
of which parts of the charge contribute most heavily to the total polarity
of the molecule. Of course, the separation of these interdependent
descriptions is artificial, but it serves to emphasize which portion of
our understanding of water is based on observation, and which is based
on reasonably accurate models of the molecule.

1.1. The water molecule: description based on experiment
(a) Composition

The experiments of Cavendish and Lavoisier in the 1780s established
that water is composed of hydrogen and oxygen. Although the careful
data of Cavendish were sufficient to prove that two volumes of hydrogen
combine with one volume of oxygen, he did not point this out, and it was
left to Gay-Lussac and Humboldt to make this discovery in 1805 (Parting-
ton 1928). Dumas, in 1842, found that the ratio of the combining
weights of hydrogen and oxygen in water is very nearly 2 to 16.

With the discovery of the stable isotopes of oxygen in 1929 and of
deuterium in 1932, it was apparent that naturally occurring water is
actually a mixture of several species differing in molecular weight.

855339 B



2 THE WATER MOLECULE

There are at present three known isotopes of hydrogen (1H, 2H (deuter-
ium), and 3H (tritium)), and six of oxygen (140, 150, 160, 170, 180, and
190). Tritium is radioactive with a half-life of 12-5 years. The isotopes
140, 150, and 190 are also radioactive, but are short-lived and do not
occur significantly in natural water.

The relative abundance of the stable isotopes in water was discussed
at length by Shatenshtein et al. (1960). The precise isotopic content
of natural water depends on the origin of the sample but within the
limits of variation, the abundances of Ha

180, H2
170, and HDO may be

stated as 0-20 per cent, 0-04 per cent, and 0-03 per cent respectively.
Since preparation of pure H2

180 is exceedingly difficult, virtually all
experimental measurements on water have been made on the naturally
occurring substance.

A few words should be said about the terminology used in this book.
The term water refers either to H20 in all its phases or simply to liquid
HaO, according to the context. Ice refers to any of the solid forms of
H20, not necessarily to ordinary ice I. The terms steam and water
vapour are used interchangeably for gaseous water. Occasionally the
term heavy water is used for D20.

(6) Energetics of formation

Suppose we slowly bring together two hydrogen atoms and one
oxygen atom, all in their electronic ground states, to form a water mole-
cule in its electronic, vibrational, rotational, and translational ground
state (that is, the process takes place at 0 °K). The energy change of
this hypothetical reaction, called the energy of formation at 0 °K, is
obtained by combining thermochemical and spectroscopic data (Wag-
man et al. 1965):

= —57-102 kcal mol"1 (from heat of combustion)
= —58-983 kcal mol-1 (from spectroscopic heat

of dissociation)
= —103-252 kcal mol"1 (from spectroscopic heat

of dissociation)

= — 219-337 kcalmol-1

The negative sign indicates, of course, that formation of the molecule is
accompanied by a net decrease of energy. In stating a value for the
energy of formation, we have been careful to specify that the tempera-
ture is 0 °K, because at any higher temperature the energy of formation
is somewhat more negative, owing to the difference of the combined
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translational energies of the atoms and the combined rotational and
translational energies of the molecule. Moreover, heats of formation are
usually measured at constant pressure and are, therefore, actually
enthalpies of formation. The enthalpy of formation at a given tempera-
ture is slightly more negative than the corresponding energy of formation,
owing to the pressure-volume term. The enthalpy of formation of water
at 25 °C is -221-54 kcal mol-1 (see Table 1.1).

The electronic binding energy of a water molecule is the difference be-
tween the energy of the molecule with its nuclei stationary and the sum of
the energies of its constituent atoms. It is slightly larger than the energy
of formation at 0 °K. This is because even at 0 °K the molecule possesses
a residual vibrational energy called the zero-point energy, which is not
included in the energy of formation as we have denned it. The zero-point
energy is evaluated from spectroscopic data (see Section 1.1 (d)); when it
is subtracted from the energy of formation at 0 °K, the electronic
binding energy is obtained (Table 1.1).

TABLE 1.1

Energies associated with the formation of a water molecule

(1) Energy of formation from atoms at 0 °K
(2) Zero-point vibrational energy
(3) Electronic binding energy = (1) — (2)
(4) Enthalpy of formation at 25 °C
(5) Bond energy of O-H bond at 0 °K = J x (1)
(6) Dissociation energy of H-O
(7) Dissociation energy of H-OH = (l)-(6)

-219-34f kcal mol-1

13-25J
-232-59
-221-54f

109-7
101-5§
117-8

f Wagman et al. (1965). J Section 1.1 (d). § Cottrell (1958).

The O-H bond energy of water is taken as half the energy of formation
of the molecule, because water has two O-H bonds; its value is 109-7
kcal mol"1 at 0 °K. A quantity closely related to the bond energy is the
dissociation energy, which is defined as the energy to break a bond at
0 °K. Curiously enough, neither of the O-H bonds of water has a
dissociation energy equal to the O-H bond energy. Cottrell (1958,
p. 187) summarized the experimental evidence on this topic and con-
cluded that the most accurate value of the energy for the dissociation
of H-O into H and 0 is 101-5^0-5 kcal mol-1. Since energy must be
conserved, the sum of the dissociation energies of the two bonds of water
is equal to the energy of formation, and so the energy for the dissociation
of H-OH into H and OH is 117-8 kcal mol-1.

Pauling (1960, p. 622) explained the inequality of the two dissociation
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energies as follows: the dissociation of the second 0-H bond permits
the oxygen atom to undergo an energetically favourable electronic
rearrangement, thereby reducing the second dissociation energy. When
the second 0-H bond is broken, the resulting oxygen atom has a Is22s22p*
electronic configuration. One of the Russell—Saunders states correspond-
ing to this configuration is 3P, and this state is stabilized by resonance
of the two unpaired electrons. Pauling estimated that the stabilization
energy is about 17-1 kcal mol"1. Thus if the second dissociation produced
an oxygen atom in its valence state rather than in the more stable 3P
state, the corresponding dissociation energy would be

101-5 + 17-1 = 118-6 kcal mol"1.

This is essentially equal to the energy of the first dissociation.

(c) Molecular dimensions
The bond lengths and the bond angle of the water molecule are known

with remarkable accuracy from the vibration-rotation spectra of normal
and isotopic water vapour. The enormous labour of measuring and
assigning the thousands of spectral lines was done by Darling and
Dennison (1940), Benedict, Gailar, and Plyler (1956), and a number of
others. Dennison (1940) and Herzberg (1950) discuss the procedure
for deducing the moments of inertia, and hence the molecular dimensions,
from the spectra; here we will be concerned only with the results.

TABLE 1.2

Molecular dimensions of D20, H20, and HDOf

Molecule

Moments of inertia /**
X 1040 g cm2! II'

JV*

Bond length X 108 cm fe

Bond angle 2ae

DaO

5-6698
3-8340
1-8384
0-9575

104-474°

H20

2-9376
1-9187
1-0220
0-95718

104-523°

HDO

4-2715
3-0654
1-2092
0-9571

104-529°

f Determined by Benedict et al. (1956).
J The K*-axis passes through the molecular centre of mass and is perpendicular to

the plane of the molecule. In HZO and D2O, the z*-axis is the bisector of the bond angle
in the plane, and the j/*-axis is perpendicular to the other two. In HDO the z-* and
2/*-axes are rotated about the a;*-axis by 21-09°. The subscript e denotes that the corre-
sponding quantity refers to the equilibrium (vibrationless and rotationless) state.

The nuclei of a water molecule form an isosceles triangle, with a
slightly obtuse angle at the oxygen nucleus. Table 1.2 shows the
molecular dimensions of D20, H2O, and HDO found by Benedict et al.
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(1956). All entries in this table refer to the equilibrium state, of the
molecule, the hypothetical state in which the molecule is vibrationless
as well as rotationless, lacking even zero-point vibrational energy. The
fiction of the equilibrium state is adopted because the average molecular
dimensions are slightly dependent on the vibrational and rotational
states of the molecule. This dependence is small, but is significant when
accurate measurements are considered. The superscripts x*, z*, and y*
to the moments of inertia in Table 1.2 refer to the axes of the moments:
for H20 and D20 the cc*-axis is perpendicular to the plane of the mole-
cule, the z*-axis lies in this plane and is the bisector of the bond angle,
and the «/*-axis is perpendicular to the other two. These axes are
respectively parallel to the x-, z-, and ?/-axes of Fig. 1.2 (a) (p. 13), but
have their origin at the molecular centre of gravity instead of at the
nucleus of the oxygen atom. Note that the largest moment is about
the a:*-axis and the smallest is about the ?/*-axis.

The equilibrium bond lengths and bond angles of the three isotopic
molecules are very nearly equal. This result is consistent with the
Born-Oppenheimer approximation, which predicts that the electronic
structure of a molecule is independent of the masses of its nuclei.
Benedict et al. estimated the uncertainty in the values of fe to be
±0-0003 X 10~8 cm, and the uncertainty in the values of 2ae to be ±0-05°.
They believe that the best values of the equilibrium dimensions are:
fe = 0-9572 X 10-8 cm, and 2«e = 104-52°.

As mentioned above, the dimensions of the water molecule depend on
the quantum state of the molecule. Their dependence on vibrational
states is small. For each vibrational state, the molecular dimensions
may be described by three 'effective moments of inertia' (Herzberg
1950, vol. ii, p. 461). Darling and Dennison (1940), using data slightly
less accurate than those now available, gave the following expressions
for the effective moments of inertia of the water molecule as functions
of its vibrational states:

Here v1} v2, and v3 are the quantum numbers for the three normal modes
of vibration (see the following section).
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In the higher rotational levels, the water molecule suffers considerable
centrifugal distortion and its dimensions depart significantly from their
values in the equilibrium state. For example, in the level corresponding
to a rotational quantum number J = 11, the bond angle can be de-
creased by as much as 5-58°, and the bond length may be increased by
0-006 XlO~8 cm (Herzberg 1950, vol. ii, p. 50); these distortions are
associated with a sub-level in which the molecule rotates essentially
around its y*-a,xis.

Though very little is known about the electronically excited states of
the water molecule, it is certain that the molecular dimensions in such
states differ from those in the ground state. Bell (1965) studied the
electronically excited states that are associated with the band origins
at 1240 and 1219 A in the vacuum ultraviolet spectrum of water vapour.
He concluded that in the excited state associated with the band origin
at 1240 A, the 0-H bond length is increased by 0-065±0-010 A, and
the H-O-H angle is increased by 5-2^ 1-8°. In the other excited state,
the O-H bond length is increased by 0-067±0-010 A, and the H-O-H
angle is increased by 8-5±l-8°.

Up to this point we have been concerned with the relative positions
of the atomic nuclei in a water molecule. Some indication of the mean
positions of the electrons relative to the nuclei is also available from
experiments. From magnetic and spectroscopic data, one can determine

where the electronic wave function for the ground

state of the molecule, and r\ is the square of the distance of the ith

electron from the molecular centre of mass. The quantity

which can be denoted (r2) for simplicity, is the mean value of the square
of the electronic distance from the molecular centre of mass. For the
water molecule (r2) has the value 5-l±0-7 x 10~16 cm2 (Eisenberg et al.
1965).

(d) Molecular vibrations
The nuclei of molecules, far from occupying fixed positions with respect

to each other, are in a continual state of vibration, even at 0 °K. An
important feature of these vibrations is that they can be described by
a limited number of basic vibrations known as the normal modes. A
normal mode is a vibration in which all the nuclei oscillate with the
same frequency and the same phase. The water molecule has three
normal modes and every possible vibration of the molecule can be
described as a superposition of these three modes.
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The normal modes of vibration of water are shown in Pig. 1.1. Because
the motion of the nuclei in the v1 and va vibrations is nearly along the
direction of the 0-H bonds, these modes are often referred to as 0-H
stretching vibrations. Similarly, because the H nuclei in vz move in
directions almost perpendicular to the bonds, vz is referred to as the

FIG. 1.1. The normal modes of vibration of H2O. The bonds are
represented by dashed lines. The arrows show the relative directions
and displacements of the nuclei during a given vibration. If the
arrows were drawn to the same scale as the bond lengths they would
be only a fraction of the length shown for a molecule in its ground

vibrational state. Redrawn from Mills (1963).

H-O-H bending vibration. In fact, v± involves a small amount of
H-O-H bending, and vz involves a small amount of 0-H stretching.
The mode va is called the asymmetric stretching vibration to distinguish
it from the symmetric stretching vibration vv

The transition of a water molecule from its vibrational ground state
to the excited state described by the vz mode is associated with the
infra-red absorption band centred at 1594-59 cm-1. During this transi-
tion, the quantum number v2 characterizing the v2 mode changes from
0 to 1, while the quantum numbers v1 and va characterizing the vx and v3

modes remain equal to zero. Similarly, the transition from the ground
state to the state in which only the first normal mode is excited—the
state with quantum numbers v^ = 1, v2 = 0, v3 = 0—is associated with the
absorption band centred at 3656-65 cm-1. Table 1.3 lists the frequencies
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of a few of the observed vibrational absorption bands of isotopic water
molecules and gives the quantum numbers characterizing the upper
states. Table 1.3 does not contain all of the known absorption bands of
water; less intense bands extend all the way into the green part of the
visible spectrum, and account, at least in part, for the blue colour of
water.

TABLE 1.3

Observed vibrational bands of D20, H3O, and HDOf

Quantum numbers
of upper state J
V-i V2 V3

0
1
0
0
0
0
1
1
2
0

1
0
0
2
1
2
0
1
0
0

0
0
1
0
1
1
1
1
1
3

Absorption frequencies of band
centres in cm"1

D2O H2O HDO

1178-33
2671-46
2788-05

3956-21
5105-44
5373-98
6533-37
7899-80

• •

1594-59
3656-65
3755-79
3151-4
5332-0
6874
7251-6
8807-05

10613-12
11032-36

1402-20
2726-73
3707-47
2782-16
5089-59
6452-05
6415-64

f The data for D2O and HDO, and the first three rows of data for H2O, are those of
Benedict et al. (1956). The remaining data for H2O are from Herzberg (1950).

{ In every case the lower state is the ground state, having all three quantum num-
bers = 0.

A simple expression, involving nine empirical constants, describes
the frequencies of vibrational transitions quite accurately. Let us
denote by Gfa, v2, vs) the energy above the vibrationless equilibrium
state of the state with quantum numbers v1} vz, and vs. Then

where the sums are over normal modes. The ojs in this equation are
often called the harmonic frequencies; they are the frequencies with which
the molecule would vibrate if its vibrations were perfectly harmonic
(see below). The xs are the anharmonic constants and describe the effect
on the vibrational frequencies of the departure from purely harmonic
form of the vibrations. Table 1.4 contains the vibrational constants
for H20, D2O, and HDO; the constants were determined by Benedict
et al. (1956) from the frequencies of a large number of bands in the
vibrational spectra of the isotopes of water.
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TABLE 1.4

Vibrational constants of D2O, H20, and HDO/or eqn (1.2)f

Molecule

">i
0>2

<03

x\\
«22

•^33

*12

^13

^23

D20

2763-80J
1206-39
2888-78
-22-58
-9-18

-26-15
-7-58

-87-15
-10-61

H2O

3832-17
1648-47
3942-53
-42-576
-16-813
-47-566
-15-933

-165-824
-20-332

HDO

2824-32
1440-21
3889-84
-43-36
-11-77
-82-88
-8-60

-13-14
-20-08

t Determined by Benedict et al. (1956). All entries are in cm"1.
t This value is a revision of the one given by Benedict et al. See Kuchitsu and

Bartell (1962, footnote 23).

The frequency of the transition between any two vibrational states
can be obtained from eqn (1.2) and the constants in Table 1.4. For
example, the frequency vx for the transition from the ground state to
the state in which v±= 1, vz = 0, and v3 = 0, is

Similarly,

and
Note that the anharmonic constants are negative. This means that the
higher vibrational energy levels are all somewhat closer together than
they would be if molecular vibrations were purely harmonic.

Equation (1.2) also yields an expression for the zero-point energy of
vibration:
Zero-point energy

When the constants of Table 1.4 are inserted in this equation, the zero-
point energy of H20 is found to be 4634-32 cm-1, or 13-25 kcal mol"1.
Similarly, the zero-point energies of D20 and HDO are found to be
3388-67 cm-1 and 4032-23 cm-1 respectively.

The forms of the vibrations of a molecule, and hence the frequencies
of the associated absorption bands, depend on the change in potential
energy of the molecule during the vibration. This means that the
spectrum of a molecule contains a great deal of information about the
potential energy function that describes its vibrations. In practice,

9
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the procedure for obtaining this information is quite involved, so that
simplifying assumptions are usually necessary.! An assumption com-
monly made, called the harmonic approximation, is that the force
tending to restore a bond length or bond angle to its equilibrium value
is proportional to its deviation from that value. Using the harmonic
approximation, Dennison (1940) showed that the potential energy of the
water molecule can be expressed as

where AC/ is the change of potential energy in ergs, A^ is the change in
cm of the bond length of one of the 0-H bonds, Af2 is the corresponding
quantity for the other bond, A« is the change in radians of the H—0-H
angle, and fe is the equilibrium O-H distance. The k terms are force
constants given by (all in units of 105 dyn cm"1)!

This function allows us to calculate the approximate increase in energy
for any distortion of the water molecule from its equilibrium configura-
tion. Note that the third term on the right in eqn (1.5) tells us that
changes in the two 0-H bond lengths do not produce independent effects
on the potential energy; if one of the two bonds is stretched, then
(because of the negative sign of kf.) less energy is required to stretch the
second bond by a given amount. Similarly, the positive value of kfa in
the fourth term on the right in eqn (1.5) tells us that more energy is
required to stretch a bond if the bond angle is increased, and if one or
both 0—H bonds are stretched, more energy is required to increase the
bond angle.

An explanation for the signs of the kf, and kfa force constants can be
found in the hybrid nature of the 0-H bonds (see Section 1.2(6)). As
the H-O-H angle is increased, the ^-character of the bonds is decreased
and hence the bond-lengths tend to decrease. This accounts for the
positive sign of kfai. Similarly, when an 0-H bond is extended, its p-
character increases, and so does the ^-character of the other bond.

f This procedure is described briefly by Mills (1963) and extensively by Wilson,
Decius, and Cross (1955).

$ The values given here were calculated by Kuchitsu and Morino (1965) from more
accurate data than those available to Dennison (1940),
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Hence an increase in the length of one bond favours an increase in the
length of the other, so that the sign of kf- is negative.

Potential functions that describe the vibrations of the water molecule
in fuller detail have been devised by several authors, f These functions
include terms proportional to the third and fourth powers of the nuclear
displacements in addition to the terms in eqn (1.5) and consequently
they take into account the anharmonicity of the vibrations. The function
of Kuchitsu and Morino (1965), like eqn (1.5), has Aa, Af1( and Af2 as
independent variables; it may be written as follows:

where 2AC/° represents the right-hand side of eqn (1.5), and the Ics are
the higher order force constants (in units of 10s dyn cm"1):

These constants were determined from the anharmonic constants in
Table 1.4 and from the vibration-rotation interaction constants of water
(Benedict et al. 1956).

In closing our discussion of molecular vibrations, it should be men-
tioned that electron diffraction measurements have given some addi-
tional information on the vibrations of the water molecule. Shibata and
Bartell (1965) found, for example, that the root-mean-square amplitudes
of vibrations of H20 and D20 in their ground vibrational states are
0-067 A and 0-056 A respectively.

t Pliva (1958), Kuchitsu and Bartell (1962), Papousek and Pliva (1964), and Kuchitsu
and Morino (1965).
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(e) Electrical properties
The electrical properties of a molecule, such as its dipole and quadru-

pole moments, are useful in characterizing its charge distribution, and
also in describing the electric field around the molecule. In this section
we give values for the electrical properties of the water molecule and
discuss the information they provide about its charge distribution.
Discussion of the electric field in the vicinity of a water molecule is given
in Sections 1.2 (a) and 2.1 (a).

The mere existence of a permanent dipole moment in water provides
structural information about the molecule: it demonstrates the absence
of a molecular centre of symmetry. Thus the well-established permanent
moment of water rules out the possibility of a linear H-O-H structure.
This is, of course, consistent with the value of about 104-5° for the
H-O-H angle, derived from the rotation-vibration spectrum.

Many investigators have measured the value of the permanent
electric dipole moment of water, /JL, and the more precise of these measure-
ments give values in the range /JL, = 1-84 (^0-02) x 10~18 e.s.u. cm (see
McClellan 1963). Among the most accurate data are those of Sanger
and Steiger (1928). These authors used the Debye method, in which
the dielectric constant of the vapour is measured as a function of
temperature. Moelwyn-Hughes (1964) re-examined their treatment of
the data, and believes that the most probable value of /u is l-834 X 10~18

e.s.u. cm. Stark-effect measurements of the dipole moment of water
yield values in the same range. A dipole moment is conventionally
defined as pointing from the negative towards the positive end of the
molecule, and little doubt exists that the negative end of water is the
oxygen atom, with its lone-pairs of electrons.

The values of quadrupole and octupole moment of molecules also
provide useful information about their charge distributions (Buckingham
1959). The quadrupole moments of a molecule are the electrical ana-
logues of the moments of inertia, and may be defined as

where p(r) is the total charge density of the molecule, /•„ is the a-Cartesian
component (x, y, or z) of the vector r, and d-r is an element of volume.
Adopting the x, y, z coordinate system shown in Fig. 1.2 (a), the water
molecule has three non-vanishing quadrupole moments, Qxx, Qyy, and
Qzz. The octupole moments Rapy may be similarly defined:
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FIG. 1.2. Coordinate systems used to describe the water molecule in this book.
(a) Cartesian coordinates. The molecule lies in the plane x = 0, with the z-axis
bisecting the H—O—H angle. One of the hydrogen nuclei, H', lies on the z'-axis,
and the other on the z"-axis. The y'-axis lies in the molecular plane and is
mutually perpendicular to the x'- and z'-axes, and similarly for the j/"-axis.
(6) Spherical polar coordinates. The molecule lies in the plane x = 0. Point P
is distance |r| from the oxygen nucleus, ff is the angle between r and the z-axis,
and rj> is the angle between the projection of r in the x-y plane and the z-axis.
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The only non-vanishing octupole moments of water are

Experimental values for the quadrupole and octupole moments of
the water molecule are not yet available. We may, however, readily
derive the mean value of the quadrupole moments,

from existing data. To do this we must multiply the quantity (rz)
mentioned in Section 1.1 (c) by the value of the electronic charge, —e,
and then add to this the nuclear contribution to the mean value of the
moments:

In this equation Zn is the atomic number of the nth nucleus, and r\ is the
square of its distance from the molecular centre of mass. The second
term on the right-hand side of the equation represents the contribution
of the nuclei to Q and is easily evaluated from the molecular dimensions
given in Table 1.2. Inserting the value of (r2} from Section 1.1 (c) into
eqn (1.9), we find Q = —5-6 (±1-0) xlO"26 e.s.u. cm2.

In the absence of experimental values for the individual quadrupole
and octupole moments of water, we are forced to turn to quantum-
mechanical calculations for even a rough idea of their magnitudes.
Table 1.5 shows values of the quadrupole and octupole moments of water
calculated by Glaeser and Coulson (1965) from a fairly accurate wave
function for the molecule. The values of the higher moments depend on
the choice of origin; Glaeser and Coulson chose the nucleus of the oxygen
atom as origin. The values of the'quadrupole moments in Table 1.5 have
been transformed to refer to the molecular centre of mass as origin, so
that their mean value may be compared to the experimental value of Q.
It can be seen that the calculated Q is equal within the stated un-
certainty to the experimental value. It should be noted that the negative
signs of the higher moments show that the contribution to them from the
electrons is numerically greater than the contribution from the nuclei.
The near equality of the quadrupole moments indicates that the charge
distribution of the water molecule is not far from spherical; this is
evident from eqn (1.7), which shows that Qxx, Qyy, and Qzz for a sphere
are all equal.

The change of the dipole moment of a molecule during the course of
a vibration is related to the intensity of the corresponding absorption
band. More precisely, the square of the change of dipole moment with
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TABLE 1.5

Electric and magnetic properties of the water molecule^ (in C.G.S. units)

Property Value

Dipole moment"
Mean quadrupole momeni

Experimental
Calculated6

Quadrupole momentsj
(calculated)6

Oetupole moments§
(calculated)6

Mean polarizability"

Electric field gradients at
the deuterons in D2O

C

Paramagnetic
susceptibilities J^

l-834x!0-8 e.s.u. cm

-5-6 (±1-0)
— 5-8
-6-56
-5-18
-5-73
-1-08
-0-50
-2-75

x lO"26 e.s.u. cm2

X 10~34 e.s.u. cm3

1-444X10-24 cm3

1-59 (±0-04)'

-0-70 (±0-04)

-0-89 (±0-06).

X 1015 e.s.u.
cm~3

2-46
0-77
1-42

X 10~6 e.m.u. mol^1

f Subscripts refer to axes shown in Fig. 1.2 (a).
J Origin is the molecular centre of mass.
§ Origin is the nucleus of the oxygen atom.
0 Moelwyn-Hughes (1964).
6 Calculated by Glaeser and Coulson (1965) from the 'c.i. 7' wave function of Mc-

Weeny and Ohno (1960).
c Posener (1960). It should be noted that the principal axes of the field gradient

tensor differ very slightly from the z'- and «/-axes of Fig. 1.2 (a). The field gradient axes
are rotated about the x'-axis by an angle 8 = 1° 7'±1° 10'.

d Eisenberg et al. (1965).

change in a normal coordinate is proportional to the integrated intensity
of the band (Wilson et al. 1955). For a number of molecules these inte-
grated intensities have provided interesting information about the change
of moments with bond stretching and bond bending. Unfortunately
the absolute values of intensities for vibrational absorption bands of
H20 have not as yet been determined. Moreover, they may be difficult
to interpret in terms of the electronic structure of the molecule once they
have been determined. Coulson (1959 a) has discussed these difficulties
in detail. He pointed out that the assumption often made in the inter-
pretation of intensities—that the total dipole moment of the molecule
is equal to the vector sum of the moments of the bonds—is not a good one
for water. One reason is that the lone-pairs of electrons on the oxygen
atom are thought to contribute significantly to the total dipole moment
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(see Section 1.26), and that these contributions change during a vibra-
tion.

The polarizability, a., is another constant fundamental to the descrip-
tion of the electrical properties of a molecule. It is denned as the induced
dipole moment per unit field strength, when the molecule is placed in a
uniform electric field. The mean polarizability a of a molecule can be
determined, along with its dipole moment, from the Debye method, or
alternatively, from the well-known Lorenz-Lorentz equation using
index of refraction measurements. The former method involves a long
extrapolation and thus tends to be less accurate. For example, Sanger
and Steiger (1928) found a= 1-43 X 10~24 cm3 for water, whereas
Moelwyn-Hughes (1964), using all but one point of their data, found
5 = 1-68 X 10~24 cm3. The value of a for water, derived from refractive
index data extrapolated to infinite wavelength, is 1-444X 10~24 cm3 (ibid.).

The polarizability, like the moment of inertia and the quadrupole
moment, is a tensor, having a component along each of three principal
axes. The methods we have just mentioned for determining a. give the
average value of the three components. It is possible, by combining the
value of a with both the Kerr constant and data on the depolarization of
Rayleigh scattering, to deduce the three components of a (Bottcher
1952). These data are not yet available for water vapour, although
Orttung and Meyers (1963) measured the Kerr constant of liquid water.
Their work indicates that the anisotropy of polarizability is small, so
that each component of the polarizability does not differ greatly from 5.

An interesting quantity pertaining to the charge distribution within
a molecule is the gradient of the electrostatic field at the nuclei of the
atoms. This quantity, for a given nucleus possessing a quadrupole
moment, is proportional to the quadrupole coupling energy of the
nucleus, which may be deduced from the hyperfine structure of the pure
rotational spectrum of the molecule (Orville-Thomas 1957; Kauzmann
1957). A deuterium nucleus has a quadrupole moment, and hence this
quantity can be evaluated for the deuterium nuclei in D20. Posener
(1960) has done this, and his results, expressed as the second derivatives
of the electrostatic potential, y, at the deuteron, are shown in Table 1.5.
The field gradient is also a tensor and thus has three principal com-
ponents.

For the sake of completeness we should mention the magnetic proper-
ties of water. Like most low molecular weight molecules, water has no
unpaired electrons and is thus diamagnetic. The magnetic susceptibility
X is a tensor, and the component along each axis can be written as the
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sum of a negative diamagnetic contribution and a smaller, positive
paramagnetic contribution. Thus Xxx = Xxx+Xxx> et°- The para-
magnetic contributions for the principal axes of the water molecule are
given in Table 1.5. The individual diamagnetic contributions are not
known, although their mean value, ^d, can be found by subtracting the
mean of the paramagnetic contributions from the observed mean
susceptibility. The mean susceptibility in liquid water,

is about — 13xlO-6 e.m.u. mol"1 (Selwood 1956), and this property
changes only slightly with phase. If we suppose that % of water vapour is
within 15 per cent of x of liquid water, then we find £d is

— 14-6 (±1-9) XlO-6 e.m.u. mol-1.

As shown by eqn (2.9), XA is proportional to (rz); this proportionality was
used to derive the value of (r2) given in Section 1.1 (c).

(/) Comparison of molecular energies

It is helpful to keep in mind the relative magnitudes of the energy
changes associated with, for instance, the vibrational excitation,
dissociation, and ionization of the water molecule. In this section we
compare the values of a number of these energy changes. Our purpose
is not so much to describe the changes as to give a feeling for the amounts
of energy they require, and the relation of these amounts to the total
energy of the molecule.

To begin with, let us establish the total energy of the water molecule.
The total energy of a molecule is defined as the difference between the
energy of the motionless molecule and that of the electrons and nuclei at
infinite separation and at rest. It consists of the kinetic energy of the
electrons, and the Coulombic potential energies of the electrons with each
other, of the electrons with the nuclei, and of the nuclei with each other.
We find the total molecular energy in two steps. (1) We determine the sum
of the energies of the separated atoms; this is the energy of formation
of the three separated atoms from their appropriate nuclei and electrons.
From atomic spectra (Moore 1949) it has been determined that the sum of
the ground state energies of two hydrogen atoms and one oxygen atom is
— 2070-5 eV.f (2) Adding this number to the electronic binding energy

•j- eV = electronvolt. 1 eV = 23-0609 kcal mol"1. An energy difference of 1 eV
corresponds to the absorption of radiation having a frequency of 8065-73 cm"1

(Wagman et al. 1965).
855389 0



18 THE WATER MOLECULE

of the water molecule, we obtain the total molecular energy. The elec-
tronic binding energy is —10-1 eV (Table 1.1); hence the total energy
of the water molecule is —2080-6 eV. Note that the binding energy
is less than 0-5 per cent of the total energy. The numerical value of the
total energy is important because it corresponds to the quantity that
is the result of all quantum-mechanical energy calculations. In fact,
one of the principal criteria for choosing an approximate quantum-
mechanical wave function is that the energy calculated from it agrees
closely with this value.

The part of the total energy arising from the mutual Coulombic
repulsion of the nuclei can be easily calculated from a knowledge of the
equilibrium positions of the nuclei and their charges: its value for water
is 250-2 eV, and is positive in sign. The remaining part of the total energy
is called the total electronic energy; its value, by subtraction of the nuclear
repulsion from the total energy, is —2330-8 eV.

We can use the virial theorem (e.g. Kauzmann 1957) to separate the
contributions to the total energy of the kinetic energy (KE) of the
electrons and the Coulombic potential energy (PE) of the electrons with
each other and with the nuclei. The virial theorem states that when
the molecule is in its equilibrium configuration,

Total energy = —KE = J(PE+nuclear repulsion energy).

Thus KE = 2080-6 eV and PE = —4411-4 eV.
The energies associated with electronic processes such as electronic

excitation and ionization are comparable in magnitude to the binding
energy. Excitation of electrons from a non-bonding orbital on the oxygen
atom to two of the Rydberg orbitals (high-energy orbitals about the
whole molecule) is thought to be the cause of two band systems observed
in the vacuum ultraviolet spectrum of water vapour (e.g. Bell 1965).
These bands have their origins at 1240 and 1219 A, so that the energies
of excitation are both about 10 eV. The first ionization potential of the
water molecule, the energy required to remove the most loosely bound
electron from the molecule, is only slightly larger: it is 12-62 eV, and
probably corresponds to the removal of one of the non-bonding electrons
(Price and Sugden 1948; Watanabe and Jursa 1964). Three higher
ionization potentials of water have been observed at about 14, 16, and
18 eV (Table 1.6). The assignment of these potentials is less certain, but
the second and fourth ionizations are thought to involve dissociation of
the molecule as well (Price and Sugden 1948). Inner electrons are more
tightly bound and therefore have still higher ionization potentials.
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For the purpose of comparison with the ionization potentials and energy
of electronic excitation, the dissociation energies of the water molecule,
expressed in electron volts, are also given in Table 1.6. They are both
somewhat less than half of the first ionization potential.

TABLE 1.6

Comparison of molecular energies of water (in electronvolts)

( 1 ) Energy of formation at 0 °K
(2) Zero-point vibrational energy
(3) Electronic binding energy = (1) — (2)
(4) Sum of ground state energies of separated atoms
(5) Total molecular energy at 0 °K = (3) + (4)

(5a) Contribution of kinetic energy = — (5)
(5b) Contribution of potential energy = 2x (5) — (6)

(6) Energy of nuclear repulsion
(7) Total electronic energy = (5) — (6)

Energy of electronic excitation at 1 240 A
lonization potentials : 1st

2nd
3rd
4th

Dissociation energies :
Of H-OH at 0 °K
Of H-O at 0 °K

Energy of lowest vibrational transition
Energy of a rotational transition

Internal energy change, per molecule, on vaporization at the boiling
point

Internal energy change, per molecule, on fusion of ice I at 0 °C
Internal energy change, per molecule, on transition from ice I to

ice II at -35°C

-9-511t
+ 0-575J

-10-086
-2070-465§
-2080-55!
+ 2080-6
-4411-4

+250-2
-2330-8

10-0
12-62[|
14-5±0-3ft
16-2±0-3tt
18-0±0-5ft

5-11
4-40

0-198
~ 0-005

0-39
0-06

0-0007

t Wagman et al. (1965). The conversion factors used in preparing this table are from
this reference.

% Section 1.1 (d).
§ Moore (1949).
|| Watanabe and Jursa (1964).

•ft Price and Sugden (1948).

Up to this point we have considered the water molecule to be in its
vibrationless equilibrium state, but as noted in Section 1.1 (d) the
molecule is always vibrating. At low temperatures the molecule possesses
a zero-point vibrational energy of 0-575 eV. At high temperatures, or in
the presence of electromagnetic radiation of the proper frequency, the
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molecule undergoes transitions to higher vibrational levels. The
transition to the lowest vibrationally excited state requires an energy
of 1595 cm"1, or about 0-20 eV. The transitions from the ground state
to the next three lowest vibrational levels require about 0-39, 0-45,
and 0-47 eV respectively. Evidently the energy changes associated
with vibrational transitions are much less than those associated with
purely electronic processes, such as ionization. On the other hand, these
energy changes are much greater than those required for transitions
between the rotational levels, some rotational energies being as small
as ~ 0-005 eV.

In passing, we should note that the energy changes accompanying the
phase transitions of water are also small compared to those connected
with the electronic processes of the water molecule. The internal energy
change on the vaporization of liquid water at 100 °C is 0-39 eV/molecule,
comparable to the smaller vibrational transitions. The internal energy
change on the fusion of ice I at the melting point is 0-06 eV/molecule, and
the internal energy change for the transition of ice I to ice II at —35 °C
and 2100 atm is 0-0007 eV/molecule.

We close this section by inquiring what states of ionization, dissocia-
tion, vibration, and rotation we should expect to find in a mole of dilute
water vapour at room temperature. It is well known that if the energy
change for a given transition is large compared to kT, where k is Boltz-
mann's constant and T is the absolute temperature, then thermal agita-
tion is not sufficient to cause a significant population in the upper state.
Since the value of kT at room temperature is approximately -^ eV,
which is small compared to the energy of the lowest vibrational transi-
tion, the vast majority of water molecules at this temperature are in the
ground vibrational state. It can be shown without difficulty (Brand and
Speakman 1960) that only 0-047 per cent of the water molecules are
in excited vibrational states at 300 °K. By the same argument, the
number of electronically excited, ionized, or dissociated molecules is
vanishingly small. This is not the case for rotational transitions, where
the transition energies are small compared to kT. Here molecules are
distributed over a number of rotational states: about twenty-five states
are populated by at least 1 per cent of the molecules at room temperature.
As might be expected, the effect of centrifugal distortion on the molecular
dimensions is small at 300 °K. The average bond length is increased by
about 0-00082 A over the equilibrium value, and the average bond angle
is decreased by 0-099° (Toyama et al. 1964). The decrease in bond angle
is presumably associated with rotation about the ?/*-axis.
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1.2. The water molecule: description based on theory
(a) Electrostatic models

One type of model for the water molecule, commonly used to represent
the electric field around the molecule, consists of a small number of

FIG. 1.3. Point-charge models of the water molecule, (a) Model
proposed by Verwey (1941). (6) Model proposed by Pople (1951):
the distances from the oxygen nucleus to H, c, and a are 0-97 A,
0-374 A, and 0-111 A, respectively. Reproduced from Hirschfelder,

Curtiss, and Bird (1954).

point-charges. The charges are located in agreement with the equili-
brium bond lengths and bond angle, and they are adjusted in sign and
magnitude to produce electrical neutrality and the experimental dipole
moment. An example of this sort of model is that of Verwey (1941),
shown in Fig. 1.3 (a). Like other models mentioned in this section, this
model was designed to be used in calculations of intermolecular forces.
In the model, a point-charge of +6e, where e is the protonic charge, is
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placed at the oxygen nucleus, and charges of -\-\e, are placed on each of
the hydrogen nuclei. The bond length is taken to be 0-99 A and the bond
angle is 105°. A charge of — 7eis placed on the bisector of the bond angle,
0-024 A from the oxygen nucleus, giving a dipole moment of 1-87 D.
A slightly more complex model of this type was proposed by Pople
(1951, see Fig. 1.3 (6)). In addition to charges on the nuclei, this model
represents each pair of bonding and lone-pair electrons by a point-
charge of — 2e. Other point-charge models were used by Bernal and
Fowler (1933), Rowlinson (1951), Bjerrum (1951), Campbell (1952),
and Cohan etal. (1962).

These models have been used to estimate intermolecular forces in ice
and liquid water, but the accuracy of the calculated forces is uncertain
because the models drastically oversimplify the true charge distribution
of the molecule. The oversimplification is apparent when we consider
the moments of charge associated with them. All these models were
adjusted to give the experimental dipole moment, but when their quadru-
pole and octupole moments are calculated, it is found that they differ
greatly — sometimes even in sign — from the corresponding moments
calculated from fairly accurate wave functions (see Glaeser and Coulson
1965).

A model which may be a slightly more accurate representation of the
true charge distribution, and which is still convenient for calculations of
intermolecular forces, is the multipole-expansion model used by Coulson
and Eisenberg (1966 a). In this model, the charge distribution is re-
presented by a point-dipole, a point-quadrupole, and a point-octupole,
all situated at the nucleus of the oxygen atom. The electrostatic poten-
tial, y, of this model at any point distance r from the oxygen nucleus is
given by the expression

Here the Qs and Es are the molecular quadrupole and octupole moments,
and 6 and <f> are the angles shown in Fig. 1.2 (b). The components of the
electric field in spherical polar coordinates can be found by differentiating
eqn (1.10) with respect to r, 6, and $.

The simple models described here furnish a rough description of the
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electrostatic potential in the vicinity of the molecule, but apart from
that, they tell us little more about the molecule than we already know
from experiments. For more information and for a detailed picture of
the electronic distribution within the molecule, we must turn to quantum-
mechanical models of water.

FIG. 1.4. Formation of bond m.o.s from oxygen 2p orbitals and hydrogen Is
orbitals. Reproduced, with changes of notation, from Coulson (1961).

(b) Molecular orbital theory^
To obtain wave functions that describe the electronic motions in

atoms and molecules exactly, it is necessary to solve Schroedinger's
equation for the relevant system. This is not yet possible for the water
molecule, so we must rely on techniques that produce approximate wave
functions. A commonly used technique is to suppose that the electrons
move in molecular orbitals (m.o.s), two electrons with opposed spins in
each orbital, and that these m.o.s are formed from a linear combination
of the atomic orbitals (a.o.s) belonging to the constituent atoms. Even
a simple description of water in terms of these m.o.s provides a useful
qualitative picture of the electronic distribution of the molecule, and
indicates the relation of this distribution to the value of the equilibrium
bond angle, the value of the dipole moment, and the tetrahedral co-
ordination of water molecules in condensed phases. We consider this
qualitative approach in this section, and postpone until Section 1.2 (d) a
discussion of the accurate calculation of physical properties from more
complex m.o. wave functions.

To a first approximation, we may consider each of the O-H bonds of
water as consisting of a m.o. formed from one of the 2p orbitals of the
oxygen atom and the Is orbital of a hydrogen atom. Of the eight electrons

•)• The first part of this section follows the presentation of Coulson (1961). For an
introduction to molecular orbital theory readers are referred to this work.
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belonging to the oxygen atom, two are in the spherical Is orbital bound
tightly to the nucleus, another two are in the less tightly bound spherical
2s orbital, and another two are in the 2px orbital which is perpendicular
to the plane of the paper in Fig. 1.4 (a). The remaining two electrons are
distributed, one each, in the 2py, and 2pz, orbitals as shown in Fig. 1.4 (a);
since they are initially unpaired, these electrons are free to couple with
the Is electrons of the two hydrogen atoms, forming the 0-H bonds.
The two 0-H bond m.o.s have the form

where the (f>s are the a.o.s, A and p. are parameters, the ratio A//x is a
measure of the polarity of the orbitals, and (j>(Q:2py,), for example,
means the 2p a.o. of the oxygen atom, pointing along the 7/'-axis.

If these bond m.o.s exactly described the 0-H bonds of water, we
would expect water to have a bond angle of 90°. The fact that the
observed angle is roughly 105° tells us that this description misses an
essential feature. One possibility is that repulsive interactions of the
hydrogens are sufficient to increase the bond angle. Heath and Linnett
(1948), however, using a potential function for the vibrations of water
(eqn (1.5)), showed that this repulsion can account for an increase in bond
angle of no more than 5°. They suggested that a more important factor
is the mixing, or hybridizing, of the 2s orbital of the oxygen atom with
the 2py, and 2p^ orbitals as the bonds are formed. This has the effect
of opening the bond angle and also of increasing the amount by which
the oxygen orbitals overlap the hydrogen orbitals, hence creating
stronger bonds.

The hybridization of the 2s and 2p orbitals of the oxygen atom has
still another important result: the two oxygen orbitals containing pairs
of valence electrons (2s and 2px electrons prior to hybridization) form
two lobes on the side of the oxygen atom away from the hydrogen atoms.
These lobes, called the lone-pair hybrids, are symmetrically located
above and below the molecular plane, and form roughly tetrahedral
angles with the bond-hybrids (see Fig. 1 .5). It is this tetrahedral charac-
ter of water, with two positive vertices — the hydrogens — and two
negative vertices — the lone-pair hybrids — that gives rise to the tetra-
hedral coordination of water molecules in ice and liquid water. Recog-
nition of this important structural feature of the water molecule led
Pople (1951) and Lennard-Jones and Pople (1951) to postulate the
point-charge model of Fig. 1.3 (6).
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Pople (1950) and Duncan and Pople (1953) formulated expressions for
the hybridized m.o.s in water, using the linear combination of a.o.s
method. Those of the lone-pair hydrids, I' and I", are given by

FIG. 1.5. Approximate directions of hybrid orbitals in water: 6' and b" are bond
hybrids; I' and I" are lone-pair hybrids.

where el is a constant describing the hybridization and <f>(Q:2p[l']) is
an oxygen 2p orbital in the direction I' (see Fig. 1.5). The m.o.s of the
bonds, b' and b", are linear combinations of the oxygen hybrid orbitals
and the hydrogen Is orbitals; they are given by

Here eb describes the hybridization, and A//Z. is a measure of the polarity
of the bond. Using Slater's expression for the atomic orbitals, the
orthogonality conditions of the m.o.s, and the experimental values for
the bond length, bond angle, and dipole moment, Duncan and Pople
evaluated the constants of eqns (1.12) and (1.13). They found
cos e6 = 0-093, indicating that the bond orbitals are formed mainly from
atomic ̂ -functions. The value of cos et is 0-578, indicating that the lone-
pairs have nearly an sp3 character, and the angle between the lone-pair
hybrids is 120-2°. Duncan and Pople assumed that the bond orbitals
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point directly toward the hydrogen atoms; more complex wave functions
indicate that this may not be exactly so.

Fig. 1.6 is a contour map of the valence electron density in the H-O-H
plane for a wave function nearly identical to that of Duncan and Pople.

FIG. 1.6. Electron-density contour map, showing density of valence electrons
in the molecular y-z plane for a wave function nearly identical to that of
Duncan and Pople. Densities are given in atomic units. From Bader and Jones

(1963).

The electron density is highest near the atoms, along the bonds, and in
the region of the lone-pairs. In the following section we will summarize
more recent calculations that suggest the Duncan-Pople wave function
underestimates the electron density in the region adjacent to the oxygen
nucleus in the direction of the hydrogen atoms, and overestimates it in
the region on the opposite side of the oxygen nucleus.

Pople (1950) analysed the changes of electronic structure that
accompany departures in the bond angle from its equilibrium value.
As the bond angle is increased, cos eb, and hence the contribution to the
bonds from the oxygen 2s orbital, is increased. At the same time,
cose;, and hence the contribution to the lone-pair hybrids of the 2s
electrons, is decreased, resulting in greater repulsion between the lone-
pairs. As the bond angle continues to increase, the angle between the
lone-pairs and the bonds is decreased, giving rise to further repulsive
interactions. In a similar manner, a decrease in the bond angle from
its equilibrium value causes increased repulsive interactions between
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the hybrid bond orbitals. According to Pople, it is these repulsions
between the hybrid orbitals which largely determine the equilibrium
bond angle and the lone-pair angle in the molecule.

Equations (1.12) and (1.13) may also be used to determine which
orbitals contribute to the polarity of the molecule, and in what measure
they do so. In the first approximation to the bond orbitals of water,
eqns (1.1 la,b), the dipole moment of the molecule arises completely
from the moments of the bonds and the moment of the nuclei, because
the orbitals of the other electrons (the Is, 2s, and 2px electrons of the
oxygen) are symmetrical about the oxygen atom and so make no
contribution to the total moment. When hybridized orbitals are formed,
however, the hybrids are not symmetrical about the oxygen atom and
therefore can contribute to the moment (Coulson, 1951). Duncan and
Pople (1953), taking the total moment to be 1-84 D, found that the
contributions of the lone-pair orbitals, the bond orbitals, and the nuclei
are 3-03 D, — 6-82D, and 5-63 D, respectively. More complex wave
functions suggest that the lone-pair moment is not so large, but that it
probably accounts for some of the total moment.

(c) Electron density distribution

A slightly different picture of the water molecule emerges when
restrictions on its electron density distribution are determined by
considering the forces that the distribution exerts on the nuclei. This
method makes use of the fact that when the molecule is in its equilibrium
configuration, the net force acting on every nucleus must vanish. Now
the forces on a given nucleus arising from the other nuclei are repulsive,
so that the electronic charge must be distributed in such a way that it
balances these repulsive forces. Bader (1964a), using a relationship
known as the Hellmann-Feynman theorem,f showed that when electronic
charge is located in what he calls the binding region of the water molecule,
it opposes the repulsive forces of the nuclei and tends to bind the molecule
together. Electronic charge outside this region is said to be in the
antibinding region; this charge tends to increase at least one of the
internuclear distances and thus to force the nuclei apart. Fig. 1.7 shows
the binding and antibinding regions of the water molecule. In the
molecular plane (Fig. 1.7 (a)) the binding region includes most of the
area between the nuclei: it is enclosed by two rays which subtend an

f The Hellmann—Feynman theorem states that the force acting on a nucleus in an
isolated molecule is the sum of the electrostatic forces arising from the other nuclei and
the classical force arising from the (quantum-mechanical) electronic charge density.
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angle of 76° at the oxygen nucleus. In the x-z plane of the molecule
(Fig. 1.7 (b)) the boundary between the binding and antibinding regions
is very nearly the £-axis, the binding region being the area in which z is
positive.

FIQ-. 1.7. The binding region of the water molecule, according to Bader (1964 a).
The dashed line separates the binding region (shaded) from the antibinding

region, (a) The plane containing the nuclei, (b) The x-z plane.

We have now delineated the region in which electronic charge must
be concentrated in order that the molecule be stable. Bader (1964 a)
pointed out that this gives a criterion for judging proposed wave
functions for water: any acceptable wave function must concentrate
sufficient charge in the binding region to overcome the Coulombic
repulsion of the nuclei. Bader developed the following procedure for
testing wave functions. He noted that the charge density distribution
of an oxygen atom and two hydrogen atoms (denoted jo0(r)), placed in
the positions they would occupy in a water molecule but retaining their
atomic distributions, does not place sufficient charge in the binding
region to overcome the nuclear repulsion. He reasoned that the charge
density associated with any accurate wave function for water must
concentrate more charge in the binding region than does the atomic
distribution p0(r)- -Let us denote the charge density associated with
a proposed wave function by p(r). Now it is clear that the quantity

must be positive in the binding region if the charge density p is an accurate
description of water. If the proposed charge density p leads to a negative
A/a in the binding region, the wave function from which p is derived
cannot be an accurate description of water.

In order to determine the characteristics that an acceptable density
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distribution for the water molecule must possess, Bader (1964 a) cal-
culated Ap for several wave functions. He found that wave functions
similar to that of Duncan and Pople (1953) yield negative values of Ap
in the binding region, and hence are not completely adequate descriptions
of water. He was able, however, to produce positive values of Ap in
the binding region when several modifications were made in the Duncan
and Pople wave function. These modifications include:

1. Greatly reducing the amount of s-character in the oxygen orbitals
which overlap the hydrogen atoms. This allows the angle between
the oxygen bonding orbitals to be less than the H-O-H angle (that
is, the electron densities involved in the 0-H bonds are bent
inwards, away from the lines joining the oxygen and hydrogen
nuclei).

2. Permitting some delocalization of the bond m.o.s (that is, not
requiring that the bonds are entirely localized between two atoms).

3. Taking the lone-pair orbitals to be almost pure spx hybrids, so
that the angle between the lone-pairs is almost 180° (that is, the
lone-pairs are directed above and below the molecular plane with
almost no component in the plane pointing away from the protons).

Fig. 1.8 shows plots of Ap for a charge distribution having these
modifications: Ap is positive throughout the binding region. For this
particular charge distribution the bonding hybrids from the oxygen
are 97 per cent 2p in character and the angle between them is 64°. This
means that each bond is bent inwards by about 20°. The oxygen lone-
pairs are 50 per cent 2s and 50 per cent 2p in character. A plot of the total
valence electron density in the x-z plane for the same distribution is
shown in the left side of Fig. 1.9. The right side is a similar plot
for another charge distribution in which both the lone-pair and bond
hybrids of the oxygen are roughly sp3 in character and in which the
bond hybrids point toward the hydrogens. The latter charge distribution
predicts a negative value of Ap in the binding region and is thus un-
acceptable. Note that the angle between the lone-pairs in the acceptable
charge distribution is considerably greater than in the unacceptable one.

Bader concluded that an acceptable wave function for water must have
a charge distribution with the following characteristics: the lone-pair
orbitals must be close to sp hybrids, the orbitals of the oxygen atom
which overlap with the hydrogens must be nearly pure 2p orbitals, and
the angle between these orbitals must be considerably less than the
H-O-H angle. These conclusions are largely borne out by the more



FIG. 1.8. Plots of A/) for Bader's charge distribution with bent bonds (see text). The Ap values are in atomic units x 100. (a) In the plane con-
taining the nuclei. The hydrogen nuclei are situated at the ends of the two solid straight lines, which meet at the oxygen nucleus. The
dashed straight lines are the boundaries of the binding region, which lies between them (ef. Fig. 1.7 (a)). (6) In the x—z plane. The dashed

line separates the binding and antibinding regions (cf. Fig. 1.7 (6)). Redrawn from Bader (1964 a).
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complex wave function of Ellison and Shull (Ellison and Shull 1955,
Burnelle and Coulson 1957). This wave function predicts lone-pairs of
53 per cent 2p character and oxygen bonding orbitals of almost 100 per
cent 2p character, forming an angle of 69°.

FIG. 1.9. The left side is a plot of the total valence electron density
in the x-z plane for Bader's charge distribution with bent bonds.
The right side is the corresponding plot for the charge distribution
mentioned in the text in which the bonds and lone-pairs are sp3

hybridized. From Bader (1964 a).

(d) Accurate wave functions and the calculation of physical properties
The calculation of molecular properties requires very accurate wave

functions and elaborate computational techniques. Accurate wave
functions are needed because most properties of interest to chemists are
associated with energy changes that are small compared to the total
molecular energy. For example, if we wish to calculate the electronic
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binding energy of the water molecule to an accuracy of ̂ 50 per cent, we
must be able to calculate the total molecular energy to within ~ 0-25 per
cent. Calculations of this accuracy have become possible during the last
few years, largely as a result of the development of techniques for evalu-
ating the difficult integrals which occur in the quantum-mechanical
expressions for energy and other properties. Let us now briefly consider
some of the best wave functions so far devised for water, and the values
of physical properties calculated from them. Table 1.7 contains a
summary of these wave functions and their associated properties.

The work of Ellison and Shull (1955) was one of the earliest attempts
to formulate an accurate description of the water molecule. In setting
up their molecular orbital wave function, Ellison and Shull first grouped
the a.o.s of the atoms into seven 'symmetry orbitals'. These are linear
combinations of the Slater a.o.s taken so as to belong to irreducible
representations of the symmetry group of the molecule. Then m.o.s
were formed by taking linear combinations of symmetry orbitals
possessing the same symmetry. The coefficients of the symmetry orbitals
which produce the lowest electronic energy were found by Roothaan's
(1951) method. This technique is often called the SCF (self-consistent
field) m.o. method. All ten electrons were considered in this treatment
and all integrals were retained in the calculation, although some of the
multicentre integrals were approximated. The mathematical expression
for the wave function, T, is a determinant

where i/'1(2), for example, represents the first molecular orbital occupied
by the second electron. Electrons in orbitals with bars have a spin
component of the opposite sign of those in orbitals without bars. Such
a wave function is useful for calculating molecular properties such as the
ionization energy, but is not easily visualized because the m.o.s are not
localized in particular regions of the molecule. Both Ellison and Shull,
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and Burnelle and Coulson (1957), transformed the wave function to
'equivalent orbitals' which are more nearly localized. The calculations
indicate that the lone-pairs contribute 1-69 D to the total moment, and,
as discussed in the previous section, that the bonds are bent inwards.

Utilizing recent methods of computing molecular integrals, Pitzer
and Merrifield (1966) were able to calculate physical properties from
Ellison and Shull's wave function with improved accuracy (see Table
1.7). Pitzer (1966) went on to calculate several properties from this wave
function after optimizing the orbital exponents of the a.o.s (Ellison and
Shull had determined their orbital exponents by Slater's rules). The
resulting values of the dipole moment, force constants, and field gradients
are in good agreement with experiment.

McWeeny and Ohno (1960) constructed a number of wave functions
for water, taking care to emphasize the localization of bonds and
lone-pairs. They used the same a.o.s as Ellison and Shull and were thus
able to use the integrals of the earlier work. We should note, however,
that as some of these integrals were evaluated by approximate methods,
their numerical results are subject to small uncertainties. McWeeny
and Ohno first hybridized the seven a.o.s on the hydrogen and oxygen
atoms to form seven new a.o.s which are orthogonal and spatially
directed in such a way that

(1) four of them can be overlapped in pairs to describe the bonds,
(2) two of them describe equivalent lone-pairs,
(3) one describes an oxygen inner shell.

From the new a.o.s they formed seven different wave functions of
increasing complexity. Three of these are SCF wave functions analogous
to the Ellison and Shull wave function; two are configuration-interaction
wave functions that take into account the effects of several pairings of
electrons. Table 1.7 gives values for physical properties calculated
from the function built up from seven configurations (the 'c.i. 7' wave
function). This wave function is a sum of eight determinants, the first
of which is similar to eqn (1.14).

Several authors have bypassed the difficulty of evaluating multicentre
integrals by constructing m.o.s from a.o.s that are all centred at the
same point in space. Inherent in this method, however, is a new difficulty:
many more a.o.s must be used to achieve an adequate representation of
the molecular charge distribution. Moccia (1964), for example, expressed
the m.o.s of water as a linear combination of Slater-like functions,
all centred at the nucleus of the oxygen atom. He used a total of

855339 D
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twenty-eight Slater-like functions. The coefficients of those in a given
m.o. were found by Roothaan's method. His wave function yields
remarkably accurate values for the total energy and the equilibrium
dimensions of water.

Hake and Banyard (1965) and Bishop and Randic (1966) also proposed
one-centre wave functions for the water molecule. Hake and Banyard's
wave function, like Moccia's, is a single determinantal function, but it
is much simpler in that each m.o. is composed of only one a.o. The orbital
exponents of the a.o.s were varied to produce the lowest possible total
energy. Bishop and Randic's wave function is a sum of nineteen deter-
minants, each being composed of Slater-like orbitals.

Moskowitz and Harrison (1965), and Whitten, Allen, and Fink (1966),
attacked the problem of multicentre integrals in a different way. They
expressed their m.o.s as linear combinations of Gaussian functions.
Multicentre integrals involving Gaussians are evaluated much more
easily than those involving Slater orbitals. Whitten et al. calculated
a good value for the total energy of water by varying the coefficients of
several predetermined groups of Gaussian functions in each m.o.
Moskowitz and Harrison reported calculations with many different sets
of basis functions; the results associated with two of their wave functions
are given in Table 1.7.

(e) The charge distribution: a summary
As discussion of the charge distribution of the water molecule is

scattered throughout this chapter, it may be helpful to summarize some
of the important points here. The electronic charge of the molecule is not
confined to the nuclear plane, as is shown by the electron-density con-
tour maps in Figs. 1.6, 1.8, and 1.9, and also by the quadrupole and
octupole moments. Thus any model of the water molecule that represents
the charge distribution by a planar configuration of fixed charges is
inadequate. The experimental evidence that the water molecule is
almost isotropically polarizable is another indication that any planar
charge distribution gives an unrealistic picture of the molecule.

A prominant structural feature of water is the two lobes of charge
formed by the lone-pair electrons. These lobes project above and below
the molecular plane, and probably project away from the hydrogens to
some extent. This means that they contribute to the dipole moment of
water. The importance of their contribution is, however, an unsettled
matter; it cannot be measured because only the total moment is an
observable quantity. If the lone-pairs do contribute to the dipole



THE WATER MOLECULE 35

moment, then the total molecular moment cannot be considered to
consist of only the vector sum of the two bond moments. Similarly, as
the lone-pairs are undoubtedly quite polarizable, they also contribute
to the total polarizability of the molecule in each direction. During the
course of molecular vibrations the instantaneous values of the total
dipole moment and polarizability change, and the contributions of the
lone-pairs to these properties presumably also change, owing to changes
in hybridization as the nuclei move.

The bonds of the molecule also have interesting properties. In the
first place, careful calculations indicate that they do not lie precisely
along lines drawn from the oxygen nucleus toward the hydrogen nuclei,
but are bent inwards. In terms of the molecular orbital description of
the molecule, this is expressed by the fact that the bonding orbitals of
the oxygen atom form a smaller angle with one another than the H-O-H
angle. In addition, the bonds are not independent of each other. This
is evident from the difference in the dissociation energies of the two
bonds, and also from the normal mode analysis of the vibrational
spectrum, which shows that the equilibrium bond length of one bond is
dependent on the length of the other bond. It is also evident from
theoretical work, where it is found that acceptable results are not
obtained if bonding electrons are treated as being entirely localized.



2. The Real Vapour

HAVING discussed the nature of a water molecule in the ideal vapour,
where molecules do not interact, we next consider the real vapour. The
properties of the real vapour, like those of ice and liquid water, are
affected by the forces acting between the molecules. Indeed, studies
of water in the vapour state have made an important contribution to
what is known about the interactions of water molecules. In this chapter
we shall first consider the origin of these forces, and their relation to the
second and third virial coefficients of steam. Then we shall discuss the
thermodynamic properties of the real vapour in detail. We shall not
consider other properties of the vapour, such as its viscosity and
thermal conductivity, because these properties have not yet proved to
be very useful in understanding ice, liquid water, or the forces between
water molecules.

2.1. Forces between water molecules
(a) Origin and description of the forces

It is convenient to represent the force of interaction between molecules
A and B by a potential energy function, C/AB. This function depends on
the intermolecular separation, E, and for polar substances on the mutual
orientation of the molecules. Orientations are often expressed in terms
of the angles shown in Fig. 2.1. The net force between A and B along the
line of centres, FAB, is given by

The function £7AB is negative in sign when the net force is attractive.
Torques exerted on the molecules by each other are given by the partial
derivatives of UAB with respect to the angles.

In this section we describe the form of the potential energy function
for the interaction of a pair of water molecules. Information about this
function has come partly from interpretation of experimental virial
coefficients with the aid of statistical mechanics, partly from calculations
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with models of the water molecule, and partly from analogy to potential
functions of simpler systems. This information, as we shall see presently,
is far from complete. There is no assurance, moreover, that the potential
function for a group of water molecules is simply the sum of the potential

Fie. 2.1. A convenient coordinate system for representing the separation and
mutual orientation of two dipolar molecules. The dashed arrows give the

directions of the dipole moments.

functions for all pairs in the group. In other words, forces between water
molecules may not be pairwise additive. As a result, even a perfectly
accurate UAJ$ would predict with perfect accuracy only those physical
properties, like the second virial coefficient, that depend solely on the
interactions of pairs of molecules. Fortunately most components of
intermolecular forces are pairwise additive to some extent (Table 2.1),
so that even the physical properties depending on the interaction of a
group of molecules may be interpreted semiquantitatively in terms of
the potential functions we discuss here.

Before examining the detailed functional form of UA# it maybe helpful
to say something about its general character. The value of 27AB is
conventionally taken as zero for infinite separation of the molecules.
As two water molecules approach to within several molecular diameters,
C/AB can be either positive (molecules repelling) or negative (molecules
attracting), depending on the molecular orientations. Clearly the mean
value of UAB must be negative for two molecules, for water vapour
molecules attract each other sufficiently to condense into liquid water.
Furthermore, VAB must be positive at very small separations regardless
of mutual orientation, since water and ice have finite volumes. The small
compressibility of ice indicates that UAB increases rapidly at small
separations. These general features of UA^ are shown by the solid
curves of Fig. 2.2.
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TABLE 2.1

Characteristics of forces between water molecules

Force ^-dependence of Attractive ( — ) Pairwise
potential energy or additive

Molecules
stationary

Molecules
rotating

Long-range forces :
Electrostatic :

Dipole— dipole
Dipole— quadrupol e
Quadrupole— quadrupole
Dipole-octupole

Induction:
Dipole-induced dipole

Dispersionf
Short-range forces :

Overlap repulsion

Hydrogen bonding

B~3

R-i
R~>
R-»

R-»
s-«
, — ' &-pR
or
~5-M

complex

— or +
R-*
jR-»
R~w

R-™

£-" -
s-«

+

—

Yes

No
Yes

Nearly

No

f The R~e term in the dispersion energy is the leading term of a series ; the next
term is proportional to R~s.

Long-range forces
The total force between two molecules is often considered to be the

resultant of several component forces, and £7AB is then written as the
sum of terms, each term representing one component. The component
forces are regarded as being either long-range or short-range. Short-range
forces are those that come into play only when the electronic charge
clouds of the two molecules overlap; we shall discuss them below. Long-
range forces may be rigorously described in terms of properties of isolated
water molecules. In wave-mechanical terminology, this means that the
molecules are far enough apart for electron exchange to be neglected,
so that the wave function for the two-molecule system may be written
as a simple product of the wave functions of the isolated molecules.
Derivations of the contributions of these forces to UA# are given by
Hirschfelder et al. (1964).

Let us consider the results. The long-range forces between two water
molecules in their ground states consist of electrostatic, induction, and
dispersion forces. Electrostatic forces predominate at large separations.
They arise from the interaction of the permanent electric moments of
the molecules. The contribution to the potential function from electro-

repulsive (+)
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static forces may be written as a series:

39

FIG. 2.2. The potential energy of interaction for two water molecules having
fixed mutual orientations, as given by Stockmayer's potential (eqn (2.17)).
The lower solid curve, DAB(°)> shows the total potential energy for a pair of
molecules with parallel dipole moments; the upper solid curve, U&s(b), shows
the same function for a pair of molecules with anti-parallel dipole moments.
The dashed curves show the dispersion, repulsive, and dipole—dipole contribu-
tions to the total potential energy. In Stockmayer's function, the dispersion
and repulsive forces are independent of the mutual orientations of the mole-

cules, and thus make the same contributions to U^g(a) as to DAB(&).

Each term on the right-hand side is a function of the separation
and mutual orientation of the molecules, as well as certain electric
moments.
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The first and most consequential term of eqn (2.2) describes the inter-
action of the dipoles of the two molecules. It has the form

where / is the function of angles in brackets. In this equation ju, is the
dipole moment of an isolated water molecule,
the angles are those shown in Fig. 2.1, and B
is the intermolecular distance. Throughout
the present chapter we shall take R as the
distance between the oxygen nuclei of the
molecules. Table 2.2 presents values of C^
for several intermolecular distances and
orientations. Note that the energy is highest
(attraction weakest) in configuration (6) of
Fig. 2.3 where the dipoles are head to head.
The energy is lowest when the dipoles are
head to tail (configuration (a)). In fact, U^
is twice as low in this position as in con-
figuration (/), the most common relative
orientation of two water molecules in ice.

The next term in eqn (2.2), U^Q, describes
the interaction of a dipole with the quad-
rupole moment of another molecule, and
UQQ describes the interaction of the quad-
rupole moments of the molecules. We have

FIG. 2.3. T h e mutual orienta- • , - , • , r r
tions of two water molecules for evaluated these terms for the same set of
which energies of interaction are mutual orientations (Table 2.2) using the
given in Table 2.2 (all atoms are i i , j j i i .r rn 1,1 i K
in the plane of the paper except calculated quadrupole moments of Table 1.5

H'of configuration (/)). and standard expressions for these terms
(e.g. Margenau 1939). The values of U^Q

and UQQ are much smaller than U^ and they fall off more rapidly with
intermolecular separation than does U^: they are proportional to 5~4

and R-6 respectively, whereas U ^ is proportional to R~3 (Table 2.1).
Still other terms in the series of eqn (2.2) describe dipole-octupole forces,
quadrupole-octupole forces, etc.

f In this equation, and all others of this section except where noted, the potential
energy is in units of ergs if the moments are in electrostatic units and the other quantities
are in COS units. The units of potential energy may be converted to kcal/mol-of-inter-
action by multiplying by 1-44 X 1013.
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We have not yet treated the electrostatic forces between rotating
molecules in a gas at a temperature T. It might be expected that
electrostatic forces between rotating molecules vanish, since the forces
are as strongly attracting in some orientations as they are repelling in
others. In fact a net attraction arises because molecules are more likely
to be found in orientations of low energy than in orientations of high
energy. If we assume that B is nearly constant during molecular rota-
tion, we can express the statistical average of {?„„ for rotating molecules,
denoted (U^), by

where dO = sin#Asin0Bd#Ad0Bd<£Ad</>B. For temperatures at which
kT is much greater than the difference of the maximum and minimum
values of U^ , (U ) becomes

Evidently the statistical average of U^ for rotating molecules decreases
much more rapidly with distance than does U^ itself. The right-hand
column of Table 2.2 shows values of (U^) at 300 °K. It is seen that for
an intermolecular separation of 10 A, (U^) is only 3 per cent of the
maximum value of U .

The second component of long-range forces consists of induction
forces. They arise from the interaction of the permanent electric moments
of each molecule with induced electric moments of the other. In contrast
to the electrostatic forces, which may be either attractive or repulsive,
depending on molecular orientations, induction forces are invariably
attractive. The most important induction force is the interaction of the
dipole moment of one molecule (say A) with the dipole it induces on the
other (B). Assuming that water molecules are characterized by an
isotropic polarizability 5, we can write the potential function for this

Of course, a similar term exists for the interaction of the induced moment
on A with the permanent dipole moment of B. It should be noted that
an exact expression for the induction energy would contain relevant
components of the polarizability tensor, rather than its mean value.
For rotating molecules the dipole-induced dipole energy is given by

force as
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TABLE 2.2

Calculated contributions to the energy of interaction of two water molecules
(The molecules are separated by a distance R and are mutually oriented as shown in

Fig. 2.3. All entries are in units of kcal/mol-of-interaction.)

(a) Long-range forces

Contri-
bution

Uw

V*

PQQ

v*.

^disp

Total

R
(A)

5
10
15
5

10
15
5

10
5

10
5

10

5

Mutual orientation

(a)

— 0-78
-0-10
-0-03

0
0
0

0-01
0-00

-0-02
-0-00
-0-08
-0-00

-0-87

(b)

0-78
0-10
0-03
0-09
0-01
0-00
0-01
0-00

-0-02
-0-00

-0-08
-0-00

0-78

(c)

— 0-39
-0-05
-0-01

0
0
0
0-02
0-00

— 0-00
-0-00

-0-08
-0-00

-0-45

(d)

0-39
0-05
0-01

0
0
0

0-02
0-00

-0-00
-0-00

-0-08
-0-00

0-33

(6)

0
0
0

0-12
0-01
0-00

-0-01
-0-00

-0-01
-0-00

-0-08
-0-00

0-02

(/)

-0-39
-0-05
-0-01

— 0-07
-0-00
-0-00

-0-01
-0-00

-0-01
-0-00
-0-08
-0-00

-0-56

(U)
at 300 °K

(-0-17)t
-0-003
— 0-000

-0-01
-0-00

-0-08
-0-00

(-0-26)f

(6) Short-range forces

Contribution

Prepul
(from eqn (2.10))J

"repul
(from eqn (2.13))

It (A) Mutual orientation

2-76 All

2-76 g
c
f

Energy

4

219
5
6

f Equation (2.4 a) is not strictly applicable for R = 5 A and 300 °K because kT is
not larger than the difference of the maximum and minimum values of U .

t With A* = 4 kcal mol-1 and n = 9.

Substituting values of /j, and a from Table 1.5 we get

where E, as before, is in centimetres. Note that the dipole-induced
dipole energy, whether between rotating or stationary molecules, is
proportional to S~6. From Table 2.2 it is clear that at distances of 5 A
or more, induction forces account for only a small part of the total
long-range force. This is not the case in ice and liquid water, where the
molecules are closer to each other and the induction forces between
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water molecules are relatively much more important. In these phases
the proximity and correlated orientations of water molecules produce
very large induced dipole moments which, in turn, contribute signifi-
cantly to intermolecular forces (Section 3.4 (a)).

Dispersion forces, or London forces as they are sometimes called,
are the third contribution to the long-range energy. They arise from the
correlated movement of electrons in neighbouring molecules. A simplified
explanation of dispersion forces is that, at a given instant, the configura-
tion of electrons of molecule A results in an instantaneous dipole moment.
This instantaneous moment induces a dipole moment in molecule B
and interacts with it. London (1937) showed that the resulting potential
energy function, £7dlsp, is negative and can be represented by a series
having a leading term proportional to B~6,

Evaluation of the exact expression for C^p requires a knowledge of
the molecular wave function for ground and excited electronic states,
so that approximate formulas for f7dlsp are usually employed. One such
formula is the Kirkwood—Muller expression:

where m is the electronic mass, c' is the velocity of light, N is Avogadro's
number, and %d is the mean diamagnetic contribution to the magnetic
susceptibility. The assumption that UAisp is independent of molecular
orientation is probably not greatly in error for water molecules. Now xd

is proportional to the molecular property (r2) which was mentioned in
Section 1.1 (c):

Combining eqns (2.8) and (2.9), and substituting the values for a and
<r2} given in Table 1.5 and Section 1.1 (c), we find that the Kirkwood-
Miiller expression gives 84- 9 X 10~60 erg cm6 for the coefficient c of eqn
(2.7). We have used this value of c to compute the values of U^p shown
in Table 2.2.

Table 2.3 contains several estimates for the coefficient c describing the
dispersion energy. The first value is the one we have just derived from
the Kirkwood— Muller formula. The values predicted by other approxi-
mate expressions, the London and the Slater-Kirkwood formulas, are
smaller. Salem (1960) showed that the Kirkwood-Miiller formula yields
a value of c which is the upper limit of the true value. Also listed are
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values of c*—the proportionality constant for all intermolecular energies
varying with R~6—derived from the second virial coefficient of steam
(see following section). The constant c* is the sum of c and the coefficient
for the dipole-induced dipole energy. On the basis of eqn (2.6 a), the
latter coefficient contributes roughly 10 X 10~60 erg cm6 to c* . Thus each
value of c* in Table 2.3 should yield a value of c smaller by about
10 X lO"60 erg cm6. The values of c obtained from virial coefficients and
the various theoretical expressions cover a wide range. There is, however,
reason to believe that the actual value is near to the one predicted by the
Kirkwood-Muller formula. In the case of atoms and molecules for which
better experimental c values are known, the values of c predicted by the
Kirkwood-Muller formula tend to be slightly too large but in better
accord with experiment than coefficients obtained from the other
simple expressions (Salem 1960). The coefficient predicted by London's
formula is often too small by a factor of 2; the Slater-Kirkwood co-
efficient is better but also tends to be an underestimate.

TABLE 2.3
Proposed coefficients for dispersion and other B~6-dependent forces

between water molecules

(All entries are in units of 10~60 erg cm6.)

Method of evaluation

Theoretical expressions :
Kirkwood— Miiller formula

(eqn (2.8))
Slater-Kirkwood formula

(eqn (2.12))
London formula (London 1937)

Second virial coefficient :
Stockmayer (1941)
Margenau and Myers (1944)
Rowlinson (1949)
Rowlinson (1951 a)

c
(Dispersion energy co-
efficient of eqn (2.7))

84-9

63

47

c*
(Proportionality constant
for all energiesf varying
with #-«)

70-4
45
72-8
80-4

f The coefficient c* is the sum of c and the coefficient of the dipole-induced dipole
energy. The latter coefficient—on the basis of eqn (2.6 a)—is roughly 10 x 10~60 erg cm6.

Short-range forces
When two water molecules approach within about 3 A, short-range

forces dominate. A rigorous expression for the interaction energy at
short range would involve a wave function for all twenty electrons of the
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two molecules and would be very complicated. Roughly speaking, we
can attribute the short-range forces between water molecules to a
combination of electronic overlap repulsions and the contributions of
electron delocalization to the hydrogen bond energy (see Section 3.6 (c)).
Let us consider the overlap repulsions first. They arise from the tendency
of the electrons in one molecule to avoid those in the other, as dictated
by the Pauli principle. They come into play as the charge clouds of the
two molecules begin to overlap and they increase rapidly as the mole-
cules approach more closely: the repulsive potential energy is often
described by a term proportional to either er^ or R~n, where p and n
are constants, n being between 9 and 24.

Kamb (19656) proposed a function of the form

where a = 2-76 X 10~8 cm, to describe the overlap repulsions between
water molecules. He derived two pairs of coefficients and exponents
(A* = 2-1 kcal mol-1, n = 10; and A* = 4-0 kcal mol-1, n = 9) from
the experimental difference in energy of ices I and VII (Section 3.2),
and different assumptions about the attractive forces between molecules.
Equation (2.10) may be a reliable description of the repulsive forces
between non-hydrogen bonded molecules in ice VII, but in all probability
it poorly describes repulsion between water molecules having other
mutual orientations.

To obtain a rough idea of the dependence of overlap repulsion on the
mutual orientation of two water molecules, we can adapt a method
applied by Hendrickson (1961) and others to hydrocarbons. In this
method forces between non-bonded atoms are assumed to be described
by the Buckingham potential function

where A*, p, and c are constants and R' is the separation in Angstrom
units between the interacting atoms. The overlap repulsion (plus dis-
persion force) between two water molecules is then given by the sum of
the interactions of each atom in one molecule with each atom of the
other molecule. To use this approach we must evaluate the constants in
eqn (2.11) for H-H, 0-H, and 0-0 interactions. The second term on
the right-hand side describes, of course, the dispersion attractions
between the atoms. The coefficient c may be roughly determined from
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the Slater-Kirkwood expression:

where e is the electronic charge, «0 is the radius of the first Bohr orbit,
«A and «B are the polariz abilities of the interacting atoms, and NA and
NB are the numbers of electrons in the outer sub-shell of the atoms. Let
us take Ketelaar's (1953) recommended values of a: 0-59 x 10~24 cm3 for
oxygen in a hydroxyl group and 0-42 x 10~24 cm3 for hydrogen. These
values lead to the coefficients of R'~6 in eqn (2.13). We follow Hendrick-
son (1961) in adopting the p coefficients from experiments on the scatter-
ing of rare gases. The value for hydrogen-hydrogen repulsion is from the
scattering of helium, the value for oxygen-oxygen repulsion is from
the scattering of neon, and the value for hydrogen-oxygen repulsion is
the geometric mean of the two. Finally the values of A* are determined
from the condition that dU/dR' must vanish at R' = R0, where R0 is
the sum of the van der Waals radii of the interacting atoms. We take
1-25 A for the van der Waals radius of hydrogen and 1-4 A for that of
oxygen. The final potential functions are:

where R' is the separation of the interacting atoms in Angstroms. The
first of these equations is identical to the one derived by Hendrickson
(1961).

The first term of eqns (2.13) provides a very rough indication of the
dependence of the overlap repulsion between two water molecules on
their mutual orientation. Consider two molecules with their oxygen
nuclei 2-76 A apart, the separation of neighbouring molecules in ordinary
ice I. When they are oriented, as in (g) of Pig. 2.3, with hydrogens in
the head-on position, eqns (2.13) predict a repulsive energy of 219 kcal
mol"1. This arises almost entirely from the repulsive interaction of the
hydrogen atoms. Now rotate the molecules, keeping E = 2-76 A, until
the pair is in configuration (c) of Fig. 2.3. According to eqns (2.13) the
repulsion falls off to about 5 kcal mol"1. Clearly the repulsive energy
is very sensitive to mutual orientations. When the two molecules are
placed in configuration (/) of Fig. 2.3, the most common mutual orienta-
tion of neighbouring molecules in ice I, eqns (2.13) predict a repulsion
of 6 kcal mol-1.
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In closing our discussion of short-range forces between water mole-
cules, a few words must be said about hydrogen bonding. Although
ample proof exists for hydrogen bonds in ice and liquid water, the
present authors are unaware of any direct evidence for a hydrogen bond
between two water molecules in the vapour phase. Spectroscopic
studies, in fact, indicate that hydrogen bonds are rare or non-existent
in water vapour. This conclusion is based on the observation that the
formation of a hydrogen bond between a molecule containing a hydroxyl
group (X-O-H) and another atom is generally accompanied by a marked
decrease in O-H stretching frequency and a slight increase in X-O-H
bending frequency (Pimentel and McClellan 1960; Sections 3.5 (a) and
4.7 (a)). Similar but smaller frequency shifts have been observed during
the formation of dimers and other small polymers of water molecules.

Van Thiel, Becker, and Pimentel (1957) observed these shifts in a study
of the infra-red spectra of water molecules trapped in a matrix of nitro-
gen at 20 °K. These authors assigned the observed absorption bands
centred at 3546 and 3691 cm"1 to the stretching modes of (HaO)2 dimers.
The frequencies are considerably lower than the v1 and vs stretching
modes of isolated H2O molecules (3657 and 3756 cm-1 respectively).
They assigned the observed band at 1620 cm-1 to a bending mode of
the dimer; this frequency is somewhat higher than the bending mode of
the isolated molecule (1595 cm-1). Van Thiel et al. believe the dimer
has a cyclic, double hydrogen-bonded structure:

On the basis of these facts, one would expect that spectroscopic
methods could detect the presence of any appreciable number of hydro-
gen-bonded molecules in water vapour. Thus is it interesting that a
careful comparison of the infra-red spectra of dilute and concentrated
water vapour in the region of the v2 mode revealed no differences in
frequencies of absorption: Benedict et al. (1952) compared the solar
spectrum of the atmosphere (dilute water vapour at an average tempera-
ture of 14 °C) and the spectrum of nearly saturated steam (1 atm pressure
and 110 °C) in the region of the v2 mode. They measured the line fre-
quencies and intensities from 770 to 2200 cm-1 for both cases, and the
only differences they observed were slight intensity variations, attribut-
able to the change in temperature. Benedict et al. concluded that if
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dimers having quantized rotational states are present in saturated steam
at one atmosphere, their concentration relative to the monomer must
be less than 1 per cent.

It should be noted that the term 'hydrogen bond' has been used in
the preceding paragraphs to mean a specific association of a hydrogen
atom of one molecule with one of the lone-pairs of electrons on the other,
as occurs in ice. The second virial coefficient of steam (see following
section) leaves no doubt that dimers are present in water vapour, but
there is no evidence that these dimers contain hydrogen bonds of the
sort found in ice. Indeed, the temperature dependence of the second
virial coefficient can be reproduced by potential functions including only
terms like those we have discussed above. Any potential function con-
structed from terms discussed above would favour the head-to-tail
mutual orientation of two water molecules (position (a) of Fig. 2.3),
rather than the mutual orientations existing in ice (e.g. position (/) of
Fig. 2.3). Hydrogen bonds between water molecules may be stable
only in clusters, where the average number of hydrogen bonds is larger
than in a dimer. Owing to the paucity of information on hydrogen bonds
between molecules in steam, we shall postpone consideration of potential
functions for hydrogen-bonded water molecules until the chapter on ice.

(b) Virial coefficients
The virial coefficients of water vapour are a source of information

about the potential function for the interactions of water molecules.
These coefficients appear in the virial equation of state, an expression
that describes pressure-volume-temperature data for water vapour at
moderate pressures. It has the form

where V is the molar volume, B is the gas constant, and S(T), C(T),...
are the second, third, . . . virial coefficients. These coefficients are
functions of temperature and they depend on the intermolecular poten-
tial. The second virial coefficient, B(T), can be determined by a simple
procedure: for each temperature at which B(T) is required, the function
{(PV/ET) — \}V is plotted on the ordinate against 1/F on the abscissa;
then the ordinate intercept is B(T). According to Keyes (1958), the
second virial coefficient of water vapour can be expressed as

B(T) = 2-062— (2-9017 xl03/T)exp(l-7095xl05/T2) cm3 g-1 (2.15)
over the temperature range 323-733 °K. Fig. 2.4 shows that B(T) is
negative throughout this range but increases with rising temperature.
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Interpretation of the second virial coefficient in terms of the intermolecular

potential

The second virial coefficient is closely related to the potential function

for the interaction of a pair of molecules. Using methods of classical

FIG. 2.4. Experimental and calculated values for the second virial coefficient of
steam. The experimental values indicated by the dashed curve are those of
Keyes et al. (1936) and are described by the empirical equation

B(T) = 1-89- (2-641 x 103/!7) xexp(l-858x lO5/!72) cm3 g-i.
The calculated values have been fitted to this equation. More recent experi-

mental values are shown by the solid curve.

statistical mechanics it can be shown (e.g. Hirschfelder et al. 1964) that

B(T) is given by the expression

855339 E
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In this equation C7AB is the potential energy function for a pair of station-
ary molecules, N is Avogadro's number, and the angles are those shown
in Fig. 2.1. Stockmayer (1941) showed that the quantum -mechanical
correction to this equation changes B(T] values for H20 only about
1 per cent for temperatures between 400 and 750 °K. His arguments
are strictly applicable only for the potential function of eqn (2.17), but
other workers have assumed that the quantum-mechanical correction
is negligible for similar potential functions.

The physical meaning of eqn (2.16) is that a large negative value of
B(T) reflects strong attractive forces between molecules. This is clear
if we recall that attractive forces correspond to negative values of
UAli. When ?7AB is negative, exp(— UAB/kT) is greater than unity and
the factor 1 — exp( — U^kT) in the integral is negative. Hence orienta-
tions with negative UAB make negative contributions to B(T). By the
same token, the increasing values of B(T] at higher temperatures reflect
decreasingly negative values of ?7AB/&T.

Equation (2.16) has been widely used to derive information about
the potential functions for pairs of molecules. The usual procedure is
to start with an assumed potential function, Z7AB, containing several
undetermined constants. The assumed function is inserted in eqn (2.16).
The undetermined constants are chosen to produce the best possible fit
of the calculated B(T) values to the experimental values. Experience
has shown that almost any reasonable form for C/AB will produce B(T)
values that can be fitted to experiment. This means, of course, that the
temperature variation of the second virial coefficient is not a stringent
test of the validity of C/AB. Nevertheless, if the functional form of the
assumed UAB is basically correct, this procedure should result in a fairly
accurate potential function.

Let us review several applications of this procedure to potential
functions for a pair of water molecules. Stockmayer (1941) chose a
potential function of the form

where c* and a are undetermined constants and /represents the expres-
sion in brackets of eqn (2.3) that describes the dependence of the dipole-
dipole interaction on the relative molecular orientations. The first term
on the right-hand side of (2.17) is U^; other contributions to Electrostatic
(eqn (2.2)) are neglected. The second term is the sum of the induction
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and dispersion energies, both of which are assumed to be independent of
molecular orientations. The last term represents the repulsive interaction
of the molecules, and is also taken as being independent of orientations.
Stockmayer obtained a very close fit of calculated and experimental B( T)
values (Fig. 2.4) for c* = 70-4 x lO"60 erg cm6 and a = 2-76 A. He esti-
mated that the contribution of dispersion forces to c* is 47 X 10~60 erg cm6,
in close agreement with London's formula (see Table 2.3), but less than
half of the coefficient of B~6 in the Kirkwood-Muller expression. The
quantity a is called the collision diameter of the molecule; it is the
intermolecular separation at which C7AB would vanish if ^ were zero. It
is noteworthy that the value of a found by Stockmayer is exactly equal
to the separation of hydrogen-bonded molecules in ordinary ice (Section
3.1).

The quality of the fit of calculated B(T) values to the experimental
values does not seem to be particularly sensitive to the nature of the
repulsive term. A good fit can be achieved for most plausible repulsive
terms merely by adjusting the coefficient c* of the B~6 term. Rowlinson
(1949) obtained a good fit using a potential identical to eqn (2.17) except
that he used a repulsive term of the form c*<76/E12, with c* = 72-8 X 1Q-60

erg cm6 and a = 2-65 X 10~8 cm. Stockmayer (1941), in a second calcula-
tion, achieved an excellent fit simply by representing the repulsive forces
as those between infinitely hard spheres of diameter 3-16 A. In this
case c* was taken as 110-3X10-60 erg cm6. Repulsive forces may be
described with equal success by exponential functions, as is evident
from what follows.

Margenau and Myers (1944) attempted to extract information about
the repulsive forces between water molecules from second virial co-
efficient data. They developed a potential function for long-range
forces from theoretical considerations; then they sought an expression
for the repulsive interactions which produced a good fit between calcu-
lated and experimental B(T) values (see Fig. 2.4 for the fit they
obtained). Their final potential function can be written:
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where ^ = 1-87 x 10~18 e.s.u. cm, e = 8-5x 10~52 erg cm5,

c* = 45 X 10-60 e.s.u. cm6, d = 95 X 10-76 erg cm8,

A* = 3-25 xlO-9 erg, p = 3-6 X 10s cm-1,

A*' = 2-4X10-6 erg, p' = 6-7 X 108 cm-1,

and / represents the function in brackets in eqn (2.3). In this function
the exponential terms describe repulsive forces, e/B5 describes electro-
static forces other than dipole-dipole forces, c*/R6 describes induction
and dispersion forces, and d/Bs describes higher-order dispersion forces.
From what we have said in the previous paragraph, the strategy of
Margenau and Myers can succeed only if the long-range forces have been
accurately described. Unfortunately, recent information about these
forces between water molecules makes it doubtful that this is the case
in the Margenau-Myers equation: the e/R5 term is based on an over-
simplified model of the water molecule (that of Bernal and Fowler 1933)
and does not have the correct dependence on molecular orientations.
Moreover, in view of our discussion in the previous section, their co-
efficient c* is probably too small. It might be fruitful to repeat Margenau
and Myers's plan, incorporating more recent information on long-range
forces.

Rowlinson (1951 a) used a potential function similar to Stockmayer's
(eqn (2.17)), but with the repulsive energy proportional to R~lz and with
an additional term describing dipole-quadrupole forces. Rowlinson's
function can be written:

where c* = 80-4 x 1Q-60 erg cm6, a = 2-725 X 1Q-8 cm, e' = 4-97 X 10~44

erg cm4, and g is a function of angles describing the dependence of the
dipole-quadrupole energy on molecular orientations. Rowlinson com-
puted the coefficient of the dipole-quadrupole term from a point-charge
model for water and he assumed that vapour molecules rotate about their
z-axes (Fig. 1.2 (a)) so that they may be treated as being axially sym-
metric. Both of these approximations limit the accuracy of this term.
The values of c* and a were determined by fitting calculated values of
B(T) to experimental values. The resulting value of o- is 1 per cent less
than Stockmayer's value, but still close to the separation of hydrogen-
bonded molecules in ice. The resulting value of c* is 14 per cent larger
than Stockmayer's value, so apparently the effect of the dipole-
quadrupole term is to increase c*. This value of c*, like the values
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calculated by Stockmayer (1941) and Margenau and Myers (1944), is
smaller than that predicted by the Kirkwood-Miiller formula.

Interpretation of the second virial coefficient in terms of dimerization
An interesting, though less rigorous, interpretation of the second virial

coefficient of steam was given by Eowlinson (1949). He first assumed
that the electrostatic interaction energy of two water molecules is
significant only in configurations for which the non-polar energy is
negligible. Presumably these are configurations such as (a) of Fig. 2.3,
in which the dipole-dipole energy is by far the most important attractive
force. This assumption allowed him to treat the observed second virial
coefficient as the sum of contributions from the electrostatic forces and
from the non-polar forces. He then assumed that the contribution from
the non-polar forces is given adequately by the Berthelot equation of
state, because the Berthelot equation accurately describes the second
virial coefficients of non-polar gases. Thus the difference between the
observed second virial coefficient and that calculated by the Berthelot
equation is the contribution arising from electrostatic forces and hydro-
gen bonding. Rowlinson assumed that these forces cause a small, rever-
sible dimerization. Let us call the products of this dimerization 'strong
dimers' to distinguish them from the paired molecules resulting from
non-polar forces. Treating the strong dimers by the law of mass action,
Rowlinson derived the relation

£(Experimental)-£(Berthelot) = —RTfR?, (2.20)

where R is the gas constant, T is the temperature in °K, and KF is the
dissociation constant for a strong (H20)2 dimer. Rowlinson evaluated
the empirical constants in the Berthelot equation from the critical
temperature and pressure of steam, and found that the observed tem-
perature dependence of the second virial coefficient of steam is repro-
duced satisfactorily by eqn (2.20) when KP is of the form

in-&P = 5-650-12501 T, (2.2

where the units of Kp are atmospheres.
The energy and entropy of dissociation of a strong dimer are readily

calculated from eqn (2.21). The entropy of dissociation at 373 °K is
25-8 e.u. and the energy of dissociation at the same temperature is
4-98 kcal mol-1. The close correspondence of this energy to the maximum
depth of Stockmayer's potential for two molecules in the head-to-tail
mutual orientation (Pig. 2.2) is suggestive: strong dimers may exist in
such a configuration.

(2.21)3log
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We can also estimate the mole fraction of strong dimers, -X"din,01,,
present in steam at any temperature T and pressure P by combining
the following relations with eqn (2.21):

The estimated mole fraction of strong dimers at several temperatures
and pressures is shown in Table 2.4. At the critical point (647-3 °K
and 218-3 atm), the mole fraction of strong dimers is about 0-04.

TABLE 2.4

Estimated mole fraction of 'strong dimers' present in water vapour

(Based on eqns (2.21) and (2.22))

Pressure Temperature (°K)
IUDIUJ

1-0
5-0
25-0
50-0
75-0
100-0
150-0
200-0
250-0

400 450 500

0-003 0-0013 0-0007
0-007 0-004

0-017

550

0-0004
0-002
0-010
0-020

600

0-0003
0-001
0-007
0-013
0-020
0-026

650

0-0002
0-0009
0-005
0-009
0-014
0-018
0-027
0-035
0-043

700

0-0002
0-0007
0-003
0-007
0-010
0-013
0-020
0-026
0-032

750

0-0001
0-0005
0-003
0-005
0-008
0-010
0-015
0-020
0-025

It should be emphasized that the foregoing interpretation of the
second virial coefficient is not rigorous, and that no direct evidence
exists for strong dimers in water vapour. If such dimers do indeed
exist, they may be difficult to detect, since the results in Table 2.4
indicate that the mole fraction of strong dimers at 400 °K and 1 atm
would be only about 0-003.

The third virial coefficient
We shall consider the scant information on the third virial coefficient

of steam before leaving the topic of intermolecular forces. The third
virial coefficient, C(T), depends on the potential functions for the
interaction of both two molecules and three molecules (e.g. Hirschfelder
et al. 1964). The approximate value of C(T) at a temperature T can be
found as follows: first the function {(PVJRT) — \}V is plotted against 1/F.
As mentioned above, the extrapolated value of this function at 1/F = 0
is B(T). Moreover, as can be seen from eqn (2.14), the extrapolated slope
of this function at 1/F = 0 is C(T). Mr. C. Starke, in collaboration with
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the present authors, found approximate values for C(T) of steam by this
procedure, using the P-V-T data reported by Bain (1964); the results
are shown in Fig. 2.5. It can be seen that the uncertainty in C(T) is

FIG. 2.5. Values of the third virial coefficient of steam determined by Mr.
C. Starke and the present authors from the P-V-T data reported by Bain
(1964). The points show the most probable value of C(T) at temperature T,

and the vertical lines indicate the limits of uncertainty in C(T).

quite large, particularly at lower temperatures. Nevertheless, some
qualitative statements about C(T) can be made. C(T) is negative at
temperatures below about 650 °K and decreases rapidly as T decreases;
at 600 °K C(T) is roughly — 3xl03 cm6 mol-2. These values are in
accord with values derived by Rowlinson (19516) from an equation of
state for steam.

55
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The only values of C(T) for steam calculated from potential functions
are those of Rowlinson (19516). He used a potential function similar to
eqn (2.17), but with repulsive energy proportional to S~12, and he
assumed that all forces are pairwise additive. His calculated values do
not agree at all with experiment: C(T) is calculated to be about
+3-4 X 103 cm6 mol~2 at 650 °K and increases as T decreases. At much
lower temperatures C(T) falls off and changes sign near 380 °K. Thus
these calculations predict that C(T) is positive in the region between
650 and 380 °K, whereas it appears actually to be negative in this
region, as is B(T). According to Rowlinson (1954), the physical implica-
tion of a simultaneously positive C(T) and negative B(T) is that the
association of a dimer AB with a third molecule is hindered by the
mutual interaction of A and B. In other words, six molecules cannot be
arranged in two triplets to produce as low a total energy as that given
by three pairs. Thus, the fact that C(T) is actually negative below
650° K suggests that the tendency of water molecules to cluster together
is stronger than the calculations predict.

The source of this discrepancy may lie in either, or both, of the
following.

(1) Short-range forces, perhaps hydrogen bonds similar to ones in ice,
may influence the interactions of molecules in water vapour. The
second virial coefficient can be correctly computed even though
these forces are incompletely described by the potential function.
The third virial coefficient, however, may be a more exacting test
of the potential function and hence cannot be calculated without
inclusion of these forces.

(2) The assumption of pairwise additive forces used by Rowlinson in
calculating C(T) is not valid. In other words, some attractive
force may act among three water molecules which is not present
in a pair of molecules. For example, a hydrogen bond between two
molecules may be strongly enhanced by the presence of a third
molecule polarizing both the others.

(c) Forces between water molecules: a summary
Our understanding of the forces between water molecules is still

rudimentary. In nearly all studies to date, the intermolecular potential
has been represented by a sum of terms, one term for each component of
the force. The component forces are considered to be long-range or
short-range, depending upon whether or not electron exchange between
the molecules can be neglected. The functional forms of the long-range



THE REAL VAPOUR 57

forces are known from theory, but our ignorance of constants that appear
in the expressions prevents us from evaluating these forces accurately.
For example, the functional form of the dipole-quadrupole force is
known, but the precise values of the quadrupole moments of the water
molecule are not known. Similarly, the dipole-induced dipole induction
force depends on the still unknown anisotropy of the polarizability of
the water molecule. Theoretical estimates of the coefficient of the E~6

dispersion energy also vary widely, as do estimates derived from the
second virial coefficient, so that this interaction, too, can only be
approximately evaluated. The dipole-dipole force can, of course, be
accurately evaluated, because the dipole moment of the water molecule
is known. This force is the dominant one at large distances. Present
knowledge of short-range forces is even more limited. The expressions
we have discussed for short-range forces should be regarded as extremely
crude.

The second and third virial coefficients of water vapour seem to
indicate that water molecules cluster together to a small extent below
about 650 °K. The virial coefficient data disclose little about the
structure of these polymers and, in particular, do not reveal whether
the water molecules are hydrogen-bonded to each other in the way that
they are bonded in ice. The second virial coefficient can be calculated
using a potential function that includes no description of hydrogen
bonding (except in so far as electrostatic, induction, and dispersion
forces contribute to hydrogen bonding), but this does not preclude the
existence of hydrogen bonds in the dimers. Attempts to gain information
about the potential function from the temperature variation of the
second virial coefficient have been only moderately successful owing to
two factors: the second virial coefficient is relatively insensitive to the
form of the assumed intermolecular potential function, and, as men-
tioned above, we are uncertain of the precise values of several of the
terms in the potential function. The third virial coefficient is probably
more sensitive to the form of the intermolecular potential, but accurate
experimental values of C(T) are not yet available. Moreover, taking
account of forces that are not pairwise additive in calculations of the
third virial coefficient is difficult.

In Chapter 3 we shall consider the potential function for interaction
of water molecules from two different points of view. In Section 3.6 (b)
we shall discuss semi-empirical potential functions for vibrations of
H20 molecules in ice, and in Section 3.6 (c) calculations of the energy of
hydrogen bond formation will be considered.
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2.2. Thermodynamic properties
The thermodynamic properties of water have probably been studied

in greater detail than those of any other substance. The pressure-
volume-temperature relations, the thermal energy, and the related
properties of enthalpy, free energy, and entropy have been measured
and computed over wide ranges of temperature and pressure: from as
low as 2 °K to well over 1200 °K and, for some properties, from practically
zero pressure to over 200 000 atm. We shall summarize many of these
results in three different sections. In the present section we discuss the
thermodynamic properties of gaseous water and the liquid-vapour and
solid-vapour phase changes. In Section 3.3 we shall take up the thermo-
dynamic properties of ice, particularly the phase relations of the poly-
morphs and the application of the third law of thermodynamics. The
thermodynamic characteristics of liquid water will be described in
Section 4.3.

(a) Pressure-volume-temperature relations
The importance of knowing the properties of steam for power genera-

tion has stimulated a number of careful studies of the pressure-volume-
temperature relations. The usual procedure in these determinations has
been to measure the pressure of a known amount of steam in a container
of fixed volume. Several compilations of these studies are available,
a recent one being the NEL Steam Tables 1964 (Bain 1964).f This set
of tables presents smoothed values for the specific volume (as well as
the enthalpy and entropy) of liquid water and steam at temperatures
between 0 and 800 °C and at pressures between 0 and 1000 bars.

Many of the important qualitative features of these data can be seen
in Fig. 2.6. This surface shows the specific volume of water as a function
of both temperature and pressure. Dashed contours of constant tempera-
ture (isotherms) are drawn on the surface. Clearly, the specific volume
of water vapour decreases as the pressure is raised or as the temperature
is lowered. Along any isotherm above 374-15 °C, the critical temperature,
the volume is a smooth function of pressure, but below 374-15 °C the
volume of the vapour decreases smoothly with increasing pressure only
up to the vapour saturation curve. A slight increase in pressure causes
condensation of the vapour, and the volume drops to the volume of the

•)• Keyes (1949, 1958) critically reviewed the pressure-volume-temperature data and
other properties of steam. A detailed survey of pressure-volume—temperature data in
the critical region was made by Nowak et al. (1961 a, b). Dorsey's book (1940) is a
source of thermodynamic data available prior to 1940.
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liquid along the liquid saturation curve. Since the liquid is comparatively
incompressible, the isotherms rise sharply in the liquid region.

FIG. 2.6. P-V-T surface for H2O. (The dashed lines are isotherms.)
Adopted with changes from Slater (1939).

Let us look more closely at the region of this surface where ice, liquid
water, and water vapour are in equilibrium with each other. The details of
this region are shown in the P—T diagram of Fig. 2.7, a projection of the
P—V—T surface with greatly enlarged pressure and temperature scales.
Equilibrium among all three phases exists only at the triple point (where
the pressure is 4-58 mm Hg and the temperature is 0-01 °C). The volume
of water vapour at the triple point is, of course, enormously larger than
the volumes of either liquid water or ice: the volumes per gram of liquid
water, ice, and water vapour at the triple point are 1-00,1-09, and 206100
cm3 respectively. At temperatures below the triple point, ice can be in
equilibrium with the vapour; the familiar disappearance of ice on cold
days takes place via this equilibrium. The pressure for which equilibrium
exists at any given temperature is the vapour pressure of ice. According
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to Washburn (Dorsey 1940, p. 598) the vapour pressure of ice is described
by the following equation:

FIG. 2.7. P-T diagram for H2O in the region of the triple point.

where P (in mmHg) is the vapour pressure of ice I at t °C, and

T = *+273-l, C = —1677-006 X 10-5,

A = —2445-5646, D = 120514 x 1Q-10,

B = 8-2312, E = —6-757169.

The vapour pressure of supercooled water is slightly greater than that
of ice, as is shown by Fig. 2.7. Although difficult to see in the figure,
the vapour-pressure curve of supercooled water is smoothly continuous
with the curve of the stable liquid, but the vapour-pressure curve of ice
is not. The vapour-pressure curve of liquid water between —5 °C and
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Fio. 2.8. P-V diagram for H2O in the vicinity of the critical point.

experimental isotherms;
calculated from eqn (2.26);
calculated from eqn (2.27).

Experimental data from Bain (1964), except for the 374'4° C isotherm which
is from Nowak et al. (1961 6).

the critical point can be represented by a formula proposed by Osborne
and Meyers (Dorsey 1940, p. 574):
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where P is the vapour pressure in atmospheres at t °C,

T = £+273-16, C = +1-3869 X 1Q-4,

x = T2—K, D = +1-1965 xlO-11,

y = 374-11—f, # = 293700,

A = +5-4266514, E = —0-0044,

B = —2005-1, F = —0-0057148.

Values predicted by the formula deviate from experimental measure-
ments by less than five parts in 10000. This formula, of course, is the
equation of the projection in the P-T plane of both the vapour saturation
curve and the liquid saturation curve of Fig. 2.6.

Another region of the P—V—T surface which is of special interest is the
region of the critical point. Fig. 2.8 shows a projection of this part of
the P—V—T surface on the P—V plane. The vapour saturation curve
meets the liquid saturation curve at the critical point, where the volumes
of the two phases become equal. The critical constants of H20 are
given in Table 2.5, along with those for D2O. Note that the critical
volume is only about three times larger than the volume of liquid water
at the triple point. In other words, the density of the liquid decreases by
a factor of 3 when it is heated from 0 to 374 ° C. The density of the vapour,
in contrast, increases by a factor of about 62 000 in going from the triple
point to the critical point. The critical temperature of D20, curiously
enough, is 3-2 °C lower than that of H20, though the melting-point,
boiling-point, and all triple points of the D20 phase diagram are several
degrees higher than those of the H20 diagram (see Tables 3.5 and 3.7).

TABLE 2.5

Critical constants for H20 and D20

H2O
D20

Critical
temperature, T0

(°C)

374-16-)-
370-9J

Critical
pressure, Pa
(atm)

218-3f
215-7J

Critical
volume, Fc
(cm3 mol"1)

59-l±0-6t

t Nowak et al. (1961 a). J Oliver and Grisard (1956).

The behaviour of the isotherms can be seen in Fig. 2.8. Below the
critical temperature and at small volumes they experience the dis-
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continuity in volume and subsequent steep rise already mentioned, and
far above the critical temperature they begin to assume the form of the
hyperbolas predicted by the ideal gas law. In the immediate region of
the critical point the pattern of the isotherms is complex and strongly
temperature-dependent. Experiments have shown that at the critical
point the isotherm has both zero slope and zero curvature:

Examination of the 374-4 °C isotherm in Fig. 2.8 indicates that it very
nearly obeys these conditions. A condition on isometrics—lines of
constant volume—found experimentally to prevail at the critical point is

An analysis of the P-V-T data for steam (Nowak and Grosh 1961) indi-
cates that this condition is also obeyed by all isometrics up to 440 °C.
That is, the pressure is a linear function of the temperature at constant
volume.

Equations of state^

The derivation from first principles of the equations of state of gases
is a subject of active research. One approach has been to relate the
coefficients of the virial equation of state (eqn (2.14)) to molecular para-
meters by means of statistical mechanics. In the case of water vapour,
only limited progress has been made in this direction as we have seen in
Section 2.1 (6). Consequently the best available equations of state for
steam are basically empirical, and contain numerous parameters chosen
to achieve a close fit to experimental data.

A successful equation of this type was developed by Keyes (1949). It
expresses pressure as a function of temperature and specific volume;
for temperatures below T0 it contains five constants in addition to the
gas constant, and for higher temperatures it contains an additional three.
The form of the equation is

f Over a dozen empirical equations of state for steam were reviewed by Nowak and
Grosh (1961).
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where for

At large volumes and high temperatures this equation becomes identical
in form with Dieterici's equation. Equation (2.26) is based on data
extending up to 460 °C and 367 atm. If the observed vapour densities
are introduced, it represents the vapour pressure of water from 0 to
360 °C with an accuracy of better than 1 part per 1000. The computed
pressures of steam for specific volumes larger than 20 cm3 g-1 are within
experimental error of the observed values; some computed pressures for
smaller specific volumes are shown in Fig. 2.8.

The rapid change of P-V-T properties in the immediate region of the
critical point makes them very difficult to represent analytically, so that
it is not surprising that eqn (2.26) is not entirely satisfactory in this
region. The critical isotherm computed from the T > T0 equation lies
1-5 atm above the critical isotherm computed from the T < T0 equation,
and these calculated curves straddle the experimental isotherm. The
critical isometric, moreover, does not obey the condition (32P/dT2)Fo = 0.

An empirical equation of state for the critical region of steam was
developed by Nowak and Grosh (1961). They maintain that their equa-
tion can represent the data virtually to within experimental error for
volumes between V0 and 2VC, and for temperatures between the vapour
saturation curve and 400 °C. The equation is not applicable outside this
region. The form of the equation is

where T = temperature in °K; T = l/T,

v = specific volume in cm3 g"1,

P — pressure in atm,

E = 4-55465,

to = v—

= 2-0624 xexp( —0-87498/v),

= 1260-17TXexp(17-09xl04T2),
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where T = temperature in °K,

v = specific volume in cm3 g-1,

P = pressure in bars,

E = 8-7045,

as = —4-2201,

a4 = 1-0828,

a, = —0-17548.

Values of the pressure calculated from this equation are shown in Fig. 2.8.

(b) Thermal energy
Accurate values of the enthalpy and entropy of water vapour are

listed in several steam tables (e.g. Bain 1964).| Let us consider methods
of determining these functions and their general dependence on tempera-
ture and pressure.

Owing to the interrelation of thermodynamic quantities, several
methods for determining the enthalpy, entropy, and free energy of
steam are available. Two of the most direct are:

(1) Combination of the 'ideal gas' thermodynamic functions for steam
with an empirical equation of state. The ideal gas thermodynamic
functions are the enthalpy, entropy, etc. that steam would exhibit in
the absence of molecular interactions. They are computed from spectro-
scopic data, as described below. The molar Gibbs free energy G(T, P),
enthalpy H(T, P), and entropy 8(T, P) of steam at temperature T
and pressure P are given by

where G°(T), H°(T), and S°(T) are the ideal gas thermodynamic
functions listed in Table 2.6, V is the molar volume, and E is the gas

f The enthalpy, entropy, and free energy of a substance must be expressed relative
to the enthalpy, entropy, and free energy of the substance in some reference state.
Different reference states are chosen in the various steam tables. The NEL Steam Tables
(Bain 1964) take liquid water at the triple point as the reference state.

855339 F
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constant. The variable of integration, P', has a prime to distinguish it
from the final pressure P. The explicit relations between P, V, and T in
the integrands are found from the empirical equations of state.

(2) Measurement of the heat capacity at constant pressure, GP,
followed by numerical integration. The relevant integrals appear in
Section 3.3 (b) where they are discussed in connection with the third law
of thermodynamics.

Keyes (1949) analysed the thermodynamic functions of steam obtained
by several methods and found the consistency of the results to be
generally very good. Readers interested in a detailed comparison of the
methods are referred to his article.

The ideal gas thermodynamic functions mentioned in method (1)
above are important not only for determining the properties of the real
vapour, but also for establishing the residual entropy of ice (Section
3.3 (b)) and the energy of sublimation of ice (Table 3.8). The ideal gas
functions are computed by the methods of statistical mechanics. A
partition function is written in terms of the moments of inertia,
vibrational frequencies, and other spectroscopic constants for the water
molecule. A knowledge of these constants is then sufficient to evaluate
the thermodynamic functions. The most elaborate computation of this
sort for steam was that of Friedman and Haar (1954). They represented
the partition function for water as a product of factors describing the
translational, vibrational, rotational, and coupling contributions. Their
partition function takes account of the centrifugal stretching of the
rotating molecules, the anharmonicity of the molecular vibrations, and
the coupling between rotational and vibrational motions. The required
spectroscopic constants were taken from the accurate work of Benedict
et al. (1953). Friedman and Haar computed the ideal gas thermo-
dynamic functions for H20, HDO, D20, HTO, DTO, and T20 for tem-
peratures between 50 and 5000 °K; their results for H20 between 50
and 600 °K are reproduced in Table 2.6. These authors found a negligible
difference between the thermodynamic properties of XY160—where
X and Y represent H, D, or T—and the naturally occurring mixture of
XY160, XY170, and XY18O (see Section 1.1 (a)).

A few words should be said about the pressure and temperature
dependence of the thermodynamic functions of steam. The entropy of
steam, like the entropy of any gas, increases with temperature and
decreases with pressure. This behaviour is shown in Fig. 2.9. The
particular cross-section of this surface corresponding to a pressure of
1 atm is shown in Fig. 3.12.
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TABLE 2.6

Ideal gas thermodynamic functions for H20f

(All entries are in dimensionless units. The zero subscript denotes 0 °K.
R is the gas constant.)

67

°K

50
60
70
80
90

100
110
120
130
140

150
160
170
180
190

200
210
220
230
240

250
260
270
280
290

300
310
320
330
340

350
360
370
380
390

400
450
500
550
600

4-00719
4-00634
4-00590
4-00573
4-00571

4-00581
4-00599
4-00622
4-00649
4-00680

4-00715
4-00755
4-00803
4-00860
4-00931

4-01020
4-01132
4-01272
4-01446
4-01658

4-01912
4-02214
4-02565
4-02970
4-03428

4-03942
4-04511
4-05136
4-05815
4-06547

4-07329
4-08160
4-09038
4-09958
4-10920

4-11919
4-17394
4-23453
4-29891
4-36590

3-90579
3-92262
3-93454
3-94345
3-95037

3-95591
3-96045
3-96425
3-96749
3-97029

3-97273
3-97490
3-97683
3-97858
3-98018

3-98166
3-98304
3-98436
3-98563
3-98687

3-98811
3-98936
3-99063
3-99196
3-99334

3-99478
3-99631
3-99794
3-99966
4-00148

4-00342
4-00548
4-00765
4-00995
4-01237

4-01491
4-02948
4-04691
4-06687
4-08898

11-63213
12-34582
12-95144
13-47744
13-94232

14-35883
14-73609
15-08086
15-39830
15-69243

15-96644
16-22290
16-46394
16-69130
16-90646

17-11065
17-30495
17-49027
17-66741
17-83706

17-99984
18-15628
18-30687
18-45202
18-59213

18-72753
18-85855
18-98545
19-10850
19-22793

19-34395
19-45676
19-56653
19-67344
19-77763

19-87925
20-35295
20-77837
21-16500
21-51980

15-53793
16-26844
16-88599
17-42089
17-89269

18-31474
18-69655
19-04512
19-36580
19-66273

19-93918
20-19781
20-44078
20-66989
20-88664

21-09231
21-28800
21-47463
21-65304
21-82394

21-98796
22-14565
22-29751
22-44398
22-58547

22-72232
22-85486
22-98339
23-10816
23-22941

23-34737
23-46224
23-57419
23-68339
23-79000

23-89417
24-38243
24-82529
25-23188
25-60879

f Calculated by Friedman and Haar (1954).
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The temperature dependence of the Gibbs free energy is given by
(8G/8T)P = —8. We have just seen that the entropy of steam is positive
and increases with temperature. Thus the free energy must decrease
with increasing temperature, and must decrease more rapidly at higher

FIG. 2.9. The entropy of H2O as a function of temperature and pressure.
Lines of constant pressure are drawn on the surface. Redrawn from Slater

(1939).

temperatures. This behaviour can be seen in Fig. 2.10. The pressure
dependence of the free energy is described by (8GldP)T = V. Thus at
low pressures, where the volume of steam is very large, the free energy
increases very rapidly with increasing pressure; but at higher pressures,
where the volume of steam is much smaller, the free energy increases
slowly with pressure. Note that the free energy, unlike the entropy,
enthalpy, and volume, is a continuous function of T and P at the phase
changes.

The behaviour of the heat capacity is complicated. The specific heat
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FIG. 2.10. The Gibbs free energy of H2O as a function of temperature and
pressure. The reference state is taken as ice at 0 °K. Redrawn from Slater

(1939).

Fia. 2.11. The specific heat of H20 at constant pressure. The specific heat
of the vapour along the critical isobar approaches infinity as the temperature

is lowered towards the critical temperature. From Wilson (1957).
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(heat capacity per gram) of liquid water near the boiling-point and 1 atm
pressure is 1-01 calg"10!^1. Upon vaporization, the specific heat falls
sharply to 0-50 cal g"1 °K~1. If heating is continued at 1 atm pressure,
the specific heat experiences a slight minimum near 200 °C, and then
a gradual increase (Fig. 3.12). At somewhat larger pressures the
behaviour is generally the same except that CP is slightly greater, and
the minimum occurs at higher temperatures. As the pressure approaches
the critical pressure, however, marked anomalies appear in the CP versus
temperature curve (see Fig. 2.11). The specific heat of liquid water
increases prior to vaporization and the specific heat of the vapour near
the vapour saturation curve is very large. Close to the critical point, the
value of Cp approaches infinity. At still higher pressures the CP versus
temperature curve contains a peak which becomes less pronounced as the
pressure is increased.



3. Ice

ICE, unlike liquid water, is fairly well understood: most of its properties
have been interpreted in terms of its crystal structure, the forces between
its constituent molecules, and the energy levels of the molecules them-
selves. In this chapter we describe the structure of ordinary ice and what
is known of the structures of its polymorphs. We then outline the
thermodynamic, electrical, and spectroscopic properties of ice and,
wherever possible, relate them to its crystal structure and to charac-
teristics of the water molecule. Some properties are covered in consider-
able detail, not only because they are unusual or intriguing in themselves,
but because they will be useful to us in Chapters 4 and 5 when we examine
liquid water. The chapter closes with a discussion of hydrogen bonding
and its role in determining the nature of ice.

3.1. Structure of ice I
(a) Positions of the oxygen atoms

The basic structural features of ordinary hexagonal ice (ice I) are
well established. Every oxygen atom is at the centre of a tetrahedron
formed by four oxygen atoms each about 2-76 A away. Every water
molecule is hydrogen-bonded to its four nearest neighbours: its O-H
bonds are directed towards lone-pairs of electrons on two of these
neighbours, forming two O-H—-0 hydrogen bonds; in turn, each of its
lone-pairs is directed towards an O-H bond of one of the other neigh-
bours, forming two 0—-H—0 hydrogen bonds. This arrangement leads
to an open lattice in which intermolecular cohesion is large. It can be
seen from Fig. 3.1 that the lattice consists of puckered layers perpen-
dicular to the c-crystal axis, containing hexagonal rings of water
molecules that have the conformation of the 'chair' form of cyclohexane.
There are also hexagonal rings formed by three molecules in one layer
and three molecules in the adjacent layer, but these rings have the 'boat'
conformation. This arrangement of oxygen atoms is isomorphous with
the wurtzite form of zinc sulphide and with the silicon atoms in the
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tridymite form of silicon dioxide, and consequently some authors refer
to ice I as the wurtzite or tridymite form of ice.

FIG. 3.1. The arrangement of the oxygen atoms in ice I. There are four
molecules per unit cell, which is outlined in the figure by dashes. Redrawn from

Owston (1958).

An important characteristic of this structure is the presence of vacant
'shafts' running both parallel and perpendicular to the c-axis; some of
these are shown in Fig. 3.2. The open structure produced by the shafts
accounts for the fact that ice I floats on its melt. This unusual property
is also exhibited by diamond, silicon, and germanium, three solids that
are structurally related to ice.f

Since W. H. Bragg (1922) first proposed the arrangement of oxygen atoms
shown in Fig. 3.1, H2O and D2O ice I have been studied extensively by X-ray,
electron, and neutron diffraction. No doubt exists that this arrangement is
basically correct, but some of the details are still uncertain. It is generally accepted
that the unit cell contains four oxygen atoms and has symmetry P63/mmc. The
uncertainties about the structure have to do with the precise unit cell dimensions
and their dependence on temperature.

In a critical review of this subject, Lonsdale (1958) noted that the ratio of the
unit cell dimensions, c/a, seems to be about 0-25 per cent smaller than the value

f These crystals are actually isomorphous with the oxygen atom arrangement of ice
Ic (Section 3.2 (c)).
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1-633 characteristic of a crystal built from perfect tetrahedra. This non-ideal
axial ratio indicates that either oxygen-oxygen separations of nearest neighbours

FIG. 3.2. A representation of an ice I crystal showing the van der Waals radii
of the atoms. The view is down the c-axis, illustrating the open 'shafts'.

Reproduced from Pimentel and McClellan (1960).

along the c-axis are slightly smaller than other oxygen—oxygen separations, or
that the O —- O —- O angles in the crystal are not precisely equal to the tetrahedral
angle, or that both these irregularities are present in ice.

Lonsdale assumed the first of these explanations. She then computed the
oxygen-oxygen distances of nearest neighbours in H2O and D2O ice as functions
of temperature, using smoothed unit cell parameters derived from X-ray and
electron diffraction data.f Her results are given in Table 3.1. They indicate that
the oxygen-oxygen distances for H2O and D2O ice do not differ significantly. They
also indicate that at 0 °C all nearest-neighbour O-O distances are within 0-01 A
of 2-77 A, but that the O-O distances in the direction of the c-axis hi both ices are
about 0-01 A shorter than are the other O-O separations. This difference de-
creases at lower temperatures (that is, the c/a ratio approaches the ideal value
of 1-633), and at —180 °C, both types of O-O separation are about 2-74 A. In
contrast to the data summarized by Lonsdale, the results of a more recent X-ray
study of ice I by La Placa and Post (1960) show that the non-ideal axial ratio at

t Data of Megaw (1934), Vegard and Hillesund (1942), Truby (1955), and Blackman
and Lisgarten (1957).
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TABLE 3.1

Nearest-neighbour oxygen-oxygen distances in ice I at atmospheric pressure
calculated by Lonsdale (1958)/rom diffraction data. The O-O' distances
are in the direction of the c-axis and the 0-0" distances form tetrahedral

angles with the c-axis

Temp.

0
-30
-60
-90

-120
-150
-180

H2O ice

OH- O'
(A)

2-760
2-758
2-755
2-752
2-748
2-745
2-740

OH- O"
(A)

2-770
2-767
2-763
2-759
2-755
2-750
2-743

D2O ice

OD-O'
(A)

2-761
2-758
2-756
2-754
2-751
2-748
2-744

OD- O"
(A)

2-772
2-768
2-764
2-760
2-755
2-750
2-744

0 °C persists unchanged to —180°. An indication that La Placa and Post's axial
ratios at low temperatures are more reliable than those suggested by Lonsdale is
that coefficients of thermal expansion calculated from their data are in closer
accord with directly measured values than are the corresponding coefficients
computed by Lonsdale (see Section 3.3(c)).

As mentioned above, the non-ideal axial ratios in ice may also arise from
O—O — O angles which are not exactly tetrahedral. According to Brill (1962),
the c/a ratio observed by La Placa and Post (1960) is consistent with departures
of the angles by ±0-16° from the tetrahedral angle (cos-M-i) ==• 109-47°). The
negative sign applies to the O' — O —• O" angle in Fig. 3.3 on p. 76, and the positive
sign to the O" — O —O'" angle.

(6) Positions of the hydrogen atoms^
Locating the hydrogen atoms in ice has proved a difficult task, largely

because hydrogen is less effective in scattering X-rays and electrons
than is oxygen. Before the application of neutron diffraction to this
problem, several less direct methods were used, and inasmuch as this
earlier work contributed greatly to knowledge about the hydrogen
positions, we will consider it before considering the neutron diffraction
results.

Bernal and Fowler (1933) and Pauling (1935) reasoned that the
similarity of many physical properties of ice—especially the vibrational
spectrum—to those of water vapour is evidence that H20 molecules
in ice are intact. This ruled out suggestions (for example, Barnes 1929)
that ice molecules are ionized or that the hydrogen atoms are located
midway between two neighbouring oxygens. But even assuming that

•f Owston (1958) reviewed this topic in detail.

(C)
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each H20 molecule is intact and that each 0-H bond points toward one
of the four nearest neighbouring molecules, there are six possible
orientations for every H20 molecule, and hence a vast number of possible
hydrogen arrangements in an entire ice crystal. It is not immediately
evident which one, or group, of these arrangements is energetically
favourable.

In 1935 Pauling argued that, subject to three conditions, all arrange-
ments are equally likely to occur. These conditions are:

(1) H20 molecules in ice are intact, neglecting the small fraction of
ionized molecules;

(2) each H2O molecule is oriented so that its two 0-H bonds are
directed approximately toward two of the four nearest neighbour-
ing oxygen atoms;

(3) the orientations of adjacent water molecules are such that only one
hydrogen atom lies approximately along the axis between adjacent
oxygen atoms.

The basis of Pauling's argument is that a crystal subject to only these
three conditions is not completely ordered at 0 °K, and hence has a
residual entropy. He showed that the value of the entropy arising from
this disorder may be estimated, and that it agrees very well with the
measured residual entropy at 0 °K.

Pauling's calculation of the residual entropy is as follows : there are N
molecules, and thus 22V hydrogen atoms, in a mole of ice. Ignoring condi-
tion 1, there are 22JV possible arrangements because each hydrogen atom
(or rather hydrogen nucleus) has the choice of two positions, one near
one oxygen atom, and the other near the neighbouring oxygen atom.
Introducing condition 1 (that molecules in ice are intact), all arrange-
ments of hydrogen nuclei around an oxygen atom producing any species
other than H20 are ruled out. Of the 24 ways of arranging the four
hydrogen nuclei about a given oxygen atom, only six produce H20;
the others produce H30

+, etc. Hence the total number of permitted
configurations of the crystal is

The entropy arising from this disorder, S0, is given by

This value is in excellent agreement with the measured residual entropy
of ice I, 0-82^0-15 e.u. (Giauque and Ashley 1933, Giauque and Stout
1936). In addition, the measured residual entropy of D20 ice I, 0-77^0-1
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e.u. (Long and Kemp 1936), being equal within experimental error to
the H20 value, tends to confirm Pauling's hypothesis.

Pauling's calculation of the residual entropy is not exact. This was noted by
Onsager and Dupuis (1960), who showed that Pauling's result is a lower bound for
the actual number. DiMarzio and Stillinger (1964) applied methods of lattice
statistics to this problem, and their work was extended by Nagle (1966). Nagle
proved that the correct calculated value of Sa is 0-8145=|=0-0002 e.u. for both ice I
and ice Ic. Thus Pauling's value is within 1-2 per cent of the correct value.

FIG. 3.3. Molecular dimensions in D2O ice I at — 50 °C as deter-
mined by Peterson and Levy (1957). Oxygen atoms are represented
by open circles and deuterons by shaded half-circles. Of course, at
any given time, there is only one deuteron along each O— O axis.
The accuracy of the dimensions is probably less than the number
of digits in the figure indicates (see Lonsdale 1958). Reproduced

from Owston (1958).

Neutron diffraction (Peterson and Levy 1957) has confirmed that
Pauling's disordered structure is essentially correct at —50 and
—150 °C. The diffraction pattern of D20 ice shows four 'half-deuterons'
adjacent to every oxygen atom; this is the pattern that Pauling's dis-
ordered structure would produce. Peterson and Levy believe that their
data preclude a structure in which the deuterons are ordered, for
example along the c-axis, by more than 20 per cent.

Peterson and Levy's neutron diffraction studies also yielded values
for the dimensions of D20 molecules in ice. These authors found that
the 0-D bond length is 1-01 A (see Fig. 3.3), slightly longer than the
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equilibrium bond length of an isolated molecule, 0-96 A. They also
found that the D—0—D valence angle is nearly equal to the corresponding
0—- 0—• O angle, and hence about 5° larger than in an isolated molecule.

This result was questioned by Chidambaram (1961). Chidambaram
argued that the 0-D— 0 hydrogen bond is more easily bent than the
D-O-D valence angle, and hence that the D-O-D angle in ice I should
not increase to 109-5° during condensation. He showed that the data of
Peterson and Levy are consistent with a D20 ice structure in which water
molecules are only slightly deformed from their vapour state valence
angles of about 104-5°, and in which 0-D-O bonds are slightly bent.
In this structure, each deuteron is about 0-04 A off the 0—-0 axis; or
in other words, the 0-D—-O bonds are bent by an average of 6-8°. In
support of this model, Chidambaram cited the small change of frequency
for the H-O-H bending mode in passing from water vapour to ice
(1595 cm.-1 to 1640 cm-1), and the small deviations of H-O-H angles
from 104-5° of water molecules in hydrated crystals. Some nuclear
magnetic resonance studies of ice (Section 3.5 (c)) give support to
Chidambaram's structure.

(c) Amplitudes of thermal vibration
The amplitudes of the thermal vibration of atoms in ice I have been

estimated from X-ray and neutron diffraction data, as well as from
thermodynamic data. Peterson and Levy (1957) determined the root-
mean-square vibrational amplitudes of oxygen and deuterium atoms in
D20 ice at —50 and —150 °C (Table 3.2) from their neutron diffraction
data. They found that the oxygen vibrations are nearly isotropic but
that the deuterium vibrations are markedly anisotropic. Owston (1958)
estimated from X-ray data that the H20 molecule in ice has a root-
mean-square vibrational amplitude of about 0-25 A at —10 °C.

Leadbetter (1965) calculated the vibrational amplitudes of atoms in
H2O and D20 ice from thermodynamic data. He estimated the contri-
butions to the amplitudes arising from the VL and VT intermolecular
vibrational modes (Section 3.5 (a)) as well as those from the zero-point
vibrations of the intramolecular modes; only the total root-mean-
square amplitudes are given in Table 3.2. Note that Leadbetter's results
for D20 are in good agreement with those of Peterson and Levy.

(d) Structure of ice I: a summary
The salient features of the structure of ice I are firmly established,

but some details are not yet clear. There appear to be no appreciable
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TABLE 3.2

Root-mean-square amplitudes of thermal vibrations in ice I (A)

Authors

Peterson and
Levy (1957)

Owston (1958)

Leadbetter
(1965)

Experimental
data

Neutron
diffraction

X-ray
diffraction

Thermo -
dynamic

Temp.
(°C)

-150
-50

-10

-273
-173
-150
-73
-50

0

H2O

O atoms

0-25

0-092
0-132

0-185

0-215

D2O

H atoms O atoms

0-138
0-173

0-150 0-0'90
0-178

0-145
0-221

0-195
0-248 0-214

D atoms

0-167
0-201

0-129

0-173

0-217
0-236

differences in the structures of H20 and D20 ice I, the separation of
nearest neighbouring oxygen atoms being about 2-76 A in both at 0 °C.
Evidence exists for deviations in the arrangements of oxygen atoms
from perfectly tetrahedral coordination at 0 °C, but there is no general
agreement on the temperature dependence of this deviation. The
deviation may arise from hydrogen bonds along the c-axis being some-
what shorter than the others, or from differences in the values of the two
crystallographically distinct O—- O — O angles, or from a combination
of both effects. In any case, the origin of these deviations in terms of
intermolecular forces is not known.

The dimensions of water molecules in ice I are not very different from
those of isolated molecules: the 0—H distance is about 1-01 A, and the
H-O-H angle is probably not much greater than the valence angle in
the isolated molecule, 104-5°.

Of the many possible arrangements of hydrogen nuclei in an ice
crystal, corresponding to different orientations of H2O molecules, all
those that are compatible with the conditions on p. 75 are of nearly
equal energy. Other arrangements, such as those involving the defects
discussed in Section 3.4 (6), are of greater energy and occur only rarely.
Even so, the number of possible hydrogen arrangements in a mole of ice
is as large as (3/2)6'02xl°23. The high dielectric constant of ice (Section
3.4 (a)) shows that at temperatures not very far below the melting point,
the crystal continually changes from one of these arrangements to
another.
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It seems likely that some ordered arrangement of hydrogen atoms is of
slightly lower internal energy than the disordered arrangement that is
observed at temperatures near the melting-point, and at very low
temperatures this ordered arrangement becomes the thermodynamically
stable structure. The change of molecular orientations is so slow at low
temperatures, however, that thermodynamic equilibrium is not attained
in a finite period of time. In other words, as ice I is cooled, changes of
molecular orientation become more and more sluggish, and the crystal
eventually becomes 'frozen' in a disordered structure that is probably
of higher energy than some ordered structure.

3.2. Structures of ice polymorphs
Ordinary ice I is one of at least nine polymorphic forms of ice. Ices II

to VII are crystalline modifications formed at high pressures; they were
discovered by Tammann (1900) and Bridgman (1912, 1935, 1937). Ice
VIII is a low-temperature modification of ice VII, which has been
recognized only recently as being distinct from ice VII. Most of these
high-pressure polymorphs exist metastably at liquid-nitrogen tempera-
ture and atmospheric pressure, and hence their structures and properties
can be studied without undue difficulty. These cold metastable ices are
said to be quenched.

The regions of stability of the stable ice polymorphs are illustrated
by the P-V-T surface of Fig. 3.4. In addition to the phases shown on
this surface, there are three modifications of ice that have been found to
exist metastably within the fields of the stable ices: ice IV was found by
Bridgman within the field of ice V; and both ice Ic, often called cubic ice,
and so-called 'vitreous ice' have been found within the low-temperature
field of ice I. Vitreous ice is not a true polymorph; it is a glass, or in other
words, highly supercooled liquid water.

(a) Ices II, III, and V
Ices II, III, and V occupy the central portion of Bridgman's phase

diagram. Their structures, as determined by Kamb and his co-workers,
have a number of similarities. Every water molecule is hydrogen-bonded
to its four nearest neighbours. The tetrahedra formed by the four
nearest neighbours are much less regular than the tetrahedra in ice I,
indicating that the hydrogen bonds in these polymorphs are distorted.
As in ice I, the nearest neighbours to every molecule at 1 atm lie at
2-8 ±0-1 A. In contrast to ice I, where the closest approach of non-
hydrogen-bonded molecules is 4-5 A, molecules in these polymorphs have
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neighbours to which they are not hydrogen-bonded in the range 3-2-3-5 A.
Thus the greater compactness of these polymorphs compared to ice I
arises not from the presence of shorter hydrogen bonds, but from dis-
torted hydrogen bonds that permit closer approach of non-nearest

Fia. 3.4. P-V-T surface for H2O. Adapted with changes from Zemansky (1957).

neighbours. The most notable difference in the structures of ices II, III,
and V has to do with the ordering of hydrogen atoms. Ice V, and ice III
in its field of stability, are similar to ice I in that their hydrogen atoms
are disordered (that is, the orientations of the molecules are random,
subject to the three conditions on p. 75). Ice II and supercooled ice III
seem to have ordered arrangements of hydrogen atoms.

By means of X-ray diffraction, Kamb (1964) found that the unit cell
of quenched ice II is rhombohedral and contains twelve water molecules
(Table 3.3). The structure is composed of columns of puckered hexagonal
rings, reminiscent of the columns in ice I, but linked more compactly
(Fig. 3.5 (a)). Kamb described the relation of ice II to ice I in this way:
the columns of hexagonal rings in ice I are detached, moved relatively up



FIG. 3.5. (a) Topology of hydrogen bonding in ice II. Each line represents
an O—H—-O bond, and the junction of four lines represents an H2O mole-
cule. The hydrogen-bond lengths and angles are not drawn to scale here
as they are in (6). Seven hexagonal columns, similar to those in ice I, are
visible in the figure. Bedrawn from Levine (1966). (6) Structure of ice II. Either
a rhombohedral or hexagonal unit cell may be chosen for this structure. Here
the rhombohedral unit cell is outlined, and the view is along the hexagonal
c-axis. Heights of oxygen atoms above a hexagonal (0001) plane are given in
hundredths of the c-axis (c = 6-25 A). The ordered arrangement of hydrogens
proposed by Kamb is shown in two rings. Hydrogen bonds are represented by
dashed lines; bonds linking hexagonal rings to rings above and below are
omitted to avoid confusion. Oxygen atoms GI and On are discussed in the

text. From Kamb (1964).
855330 G
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and down parallel to the c-axis, rotated about 30° around the c-axis,
and relinked in the more compact way shown in Fig. 3.5 (a). The steric
requirements of relinking cause the hexagonal rings in each column to
twist relative to one another through an angle of about 15° and alternate
rings to flatten considerably. Kamb believes the ordered arrangement
of protons has the effect of nearly flattening the ring containing On in Fig.
3.5 (b), and of puckering the ring containing Ox more strongly than the
rings in ice I.

Some characteristics of the ice II structure are summarized in Table
3.4, along with characteristics of other ice structures. The oxygen-
oxygen separation of nearest neighbours in ice II varies from 2-75 to
2-84 (±0-01) A; slightly larger than the nearest-neighbour distance in
ice I. Every molecule in ice II has a neighbour at a distance of 3-24 A
to which it is not hydrogen-bonded; oxygen atoms I and II in Fig. 3.5 (6)
have these relative positions. Eighteen different 0—- O-— 0 angles are
found in ice II, ranging from 80° to 128°. Because of the ordered arrange-
ment of hydrogens in this polymorph, not all O—-0 0 angles are
presented to H-O-H groups for hydrogen bonding. In other words, not
all 0----O-—O angles need serve as donor angles. In fact, Kamb
(1964) argued that only two 0—0—0 angles actually serve as donor
angles. If we accept his argument and further assume that all H-O-H
angles are about 105°, we find that the O-H—• 0 hydrogen bonds are
bent on the average by an angle 6 of 8°.

The hypothesis of an ordered arrangement of hydrogen atoms in ice II
is supported by several forms of evidence.

(1) Thermodynamic: ice II has an entropy roughly kln(%)N e.u. lower
than that of neighbouring phases. Kamb pointed out that this
difference is to be expected if ice II has ordered hydrogens and
the neighbouring phases do not, and if all phases are otherwise the
same in entropy.

(2) Spectroscopic: the infra-red spectrum of ice II (Section 3.5) is
consistent with an ordered arrangement of hydrogens. In fact,



TABLE 3.3

Crystallographic properties of ice polyrnorphs^

Ice

Crystal system
Space group {
Unit cell dimensions (A)§

No. molecules/unit cell
Density at — 175 °C, 1 atm

(g cm-")

Density at (T °C, P kbar) in
region of stability (g cm~3)

I

Hexagonal
P63/mmc
a 4-48
c 7-31

4
0-94

0-92
(0°, 1)

Ic

Cubic
F43m
06-35

8

0-93
(-130°, 1)

II

Rhombohedral
R3
a 7-78
a 113-1°

12
1-17

1-18
(-35°, 2-1)

III

Tetragonal
P4t 2t 2
a 6-73
c6-83
12

1-14

1-15
(-22°, 2-0)

V

Monoclinic
A2/a
a 9-22, 6 7-54
c 10-35, jS 109-2°

28
1-23

1-26
(-5°, 5-3)

VI

Tetragonal
P42/nmc
a 6-27
c5-79
10
1-31

1-34
(15°, 8)

VII

Cubic
ImSm

2

~ 1-65
(25°, 25)

VIII

Cubic
Im3m
a 3-41

2
1-50

~ 1-66
(-50°, 25)

HH
O

H

f Data for ices I and Ic are from Lonsdale (1958); data for the high-pressure polymorphs are from Kamb (1965 a, b), Kamb (1967), and Kamb
etal. (1967).

% The space groups for ices VI, VII, and VIII are not entirely certain.
§ For 1 atm and —175 °C, except for ice Ic which refers to —130° C.
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Bertie and Whalley (19646) predicted ordered hydrogens on the
basis of spectral data.

(3) Dielectric: the small dielectric constant and absence of dielectric
relaxation in ice II (Section 3.4) are consistent with a structure in
which hydrogen atoms are fixed in definite positions.

FIG. 3.6. The structure of iee III, as viewed along the c-axis. Oxygen atoms
are represented by spheres and O—H-—O bonds by rods; hydrogen atoms
are not shown. Numbers adjacent to the oxygen atoms give their z-coordinates
in hundredths of the c-axial length. Numbers along the bonds give their
lengths in A. O1 and O2 atoms are discussed in the text. From Kamb (1967).

The specific ordered arrangement of hydrogens proposed by Kamb
(1964) and illustrated in Fig. 3.5(6) should be regarded as being less
firmly established than the presence of order per se. Kamb's reasons for
favouring this particular arrangement are quite complex; one is that
the corresponding donor angles are favourable and another is that out
of several possible arrangements, the calculated X-ray structure factors
for this one give the best agreement with the X-ray data.

Kamb and Datta (1960) studied quenched ice III by X-ray methods.
They found that the unit cell is tetragonal and contains twelve molecules.
The structure (Fig. 3.6) may be described in terms of two types of



TABLE 3.4

Structural characteristics of ice polymorphs'f

Ice

Number of nearest neighbours
Distances of nearest neighbours (A)
Distance of closest non-H-bonded

neighbour (A)
O— O---O angles (deg)
Hydrogen positions

I

4
2-
4'

109'

•74
49

•5°±0-2°
Disordered

Ic

4
2-75§
4-50§

109-5°
Disordered

II

4
2-75-2-84
3-24

80°-128°
Ordered

III

4
2-76-2-80
3-47

870-1410

Disordered
above — 40 °C

V

4
2-76-2-87
3-28, 3-46

84°-135°
Disordered

VI

4
2-81
3-51

76°-128°
Disordered

VII

8:
2-
2-

109-

t
86||
8611

5°
Disordered

VIII

«t
2-86||
2-86||

109-5°
Ordered

f Entries, except where noted, refer to —175° C and 1 atm pressure. Data for ices I and Ic are from Lonsdale (1958); data for the high-pressure
polymorphs are from Kamb and Datta (1960), Kamb (1964), Kamb (1965 a, 6), Kamb (1967), and Kamb et al. (1967).
| 4 are hydrogen-bonded to central molecule.
§ At -130°C.
|| At 25 kbar. In quenched ice VII at atmospheric pressure the nearest-neighbour distance is 2-95 A (Bertie et al. 1964).
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oxygen atoms: Ox atoms lie on a hydrogen-bonded helix having a four-
fold screw axis; these helices are linked by the 02 atoms, each of which
forms hydrogen bonds with 01 atoms in four separate helices. Nearest-
neighbour separations vary from 2-76 to 2-80 A in this polymorph
(Kamb 1967). See Table 3.4.

Dielectric studies of ice III near —30 °C (Section 3.4) show that
molecular orientations are constantly changing, and hence disordered.
On the other hand, spectroscopic studies (Section 3.5) indicate that the
orientations are ordered at liquid-nitrogen temperature. Apparently
ice III undergoes a disorder—order transition as it is cooled below — 30 °C.
Whalley and Davidson (1965), in fact, found evidence for such a transi-
tion in the phase diagram. Diffraction studies of sufficient accuracy to
confirm order in the hydrogen arrangement of quenched ice III have not
yet been reported.

Ice V crystallizes in a monoclinic unit cell containing twenty-eight
molecules. Kamb et al. (1967) described its structure as follows: two
types of zig-zag chains of hydrogen-bonded molecules run parallel to
the a-axis of the crystal. One type of chain is formed from alternating
02 and 03 molecules, and the other is formed wholly from O4 molecules
(see Fig. 3.7). The 02—03 chains hydrogen-bond in pairs to the 04-04

chains; 02-03 chains are joined by Ox atoms.
The average tetrahedral coordination of molecules is more highly

distorted in ice V than in either ice II or ice III. The separations of
nearest neighbours range from 2-76 to 2-87 A, and 0--O—-0 angles
range from 84 to 135°. The smallest separations of non-hydrogen-bonded
molecules are 3-46 and 3-28 A; these separations are indicated by dashed
lines in Fig. 3.7.

Kamb et al. (1967) believe that the hydrogen atoms in quenched ice V
are disordered. A Fourier synthesis, using as coefficients the difference
of the observed structure factors and those calculated from the X-ray
data after refinement of the oxygen positions, shows peaks that may be
attributed to the hydrogens. Thirteen of the sixteen observed peaks
correspond roughly to the hydrogen positions expected for a disordered
structure in which the hydrogen atoms lie along the 0-0 axes about 1 A
from the oxygen atoms. Spectroscopic studies (Section 3.5) support
a disordered structure.

Ice IV is a metastable phase which Bridgman (1935) found within the
field of stability of ice V. This polymorph has been observed only by
Bridgman, and only definitely in the D2O phase diagram. Nothing is
known about its structure.
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FIG. 3.7. The structure of ice V, as viewed along the 6-axis. Oxygen atoms are
represented by spheres and O—H---O bonds by rods; hydrogen atoms are
not shown. Numbers adjacent to the oxygen atoms give their ^-coordinates in
hundredths of the 6-axial length (7'54A). Numbers along the bonds give
their lengths in A. Numbered molecules are discussed in the text. Redrawn

from Kamb et al. (1967).

(6) Ices VI, VII, and VIII
Ices VI, VII, and VIII are the densest of the known forms of ice. The

relative compactness of these polymorphs is a consequence of their
interpenetrating structures: in each of these ices, a fully hydrogen-
bonded framework forms cavities in which molecules of a second but
identical framework reside. The frameworks are interpenetrating, but
not interconnecting.

Kamb (1965 a) used X-ray diffraction to study ice VI, and found a
tetragonal unit cell containing ten molecules. As in all the other ices,
each molecule is hydrogen-bonded to its four nearest neighbours. The
molecules form chains that run parallel to the c-axis. These chains are
hydrogen-bonded laterally to four neighbouring chains, thereby forming
one complete framework (Fig. 3.8). Every set of four chains surrounds
a shaft that is occupied by a chain of the second framework.

All three types of nearest-neighbour distances are about 2-81 A in
ice VI. Every water molecule has eight non-hydrogen-bonded neighbours



Fio. 3.8. The structure of ice VI. Water molecules are represented here in the same way they are in Fig. 3.7. Column A
shows the hydrogen-bonded chains of water molecules that run parallel to the c-axis. Each chain participates in one of
the component frameworks. Note that the two chains are identical except that the lower one is rotated by 90°. Column B
shows four chains of each type laterally hydrogen-bonded to form each of the frameworks. The positions of the chains
relative to the unit cell (outlined) are shown. Column C shows the two frameworks combined to give ice VI. Reproduced

fromKamb (1965 a).



ICE 89

at a distance of 3-51 A; these eight are members of the other framework.
The 0— 0—- 0 angles depart markedly from 109-5°, some being as
large as 128° and others as small as 76°.

Bridgman (1937) discovered ice VII and mapped its phase boundaries
with the liquid and with ice VI (Pig. 3.4). Careful inspection of his phase
diagram led Whalley and Davidson (1965) to suggest that ice VII under-
goes a disorder-order transition as it is cooled below about 5 °C. Thermo-
dynamic and dielectric studies (Sections 3.3 and 3.4) confirmed that such
a transition does occur: that, whereas the molecular orientations are
constantly changing above 5°, they are fixed below this temperature;
and that the entropy associated with this transition is ~ — kln(%)N.
Thus it seems that ice VII has a disordered arrangement of hydrogens,
and transforms when cooled to 5 °C to a phase having ordered hydrogens.
Whalley et al. (1966) proposed that the low-temperature phase be known
as ice VIII.

Kamb and Davis (1964) studied ice at 25 kbar and —50 °C (pre-
sumably ice VIII) by X-ray methods. They found that this polymorph
has a body-centred cubic structure, each oxygen atom having eight
nearest neighbours at a distance of about 2-86 A. They proposed that
every molecule is tetrahedrally hydrogen-bonded to four of these neigh-
bours. This structure, shown in Fig. 3.9, can be regarded as two inter-
penetrating but not interconnecting lattices of the ice Ic type. Each
molecule of one lattice occupies a cavity in the other lattice. The density
of ice VIII (1-66 g cm~3 at 25 kbar) is not quite twice the density of
ice Ic, owing to the longer oxygen-oxygen distances in ice VIII. The
fact that this distance is greater than the 2-75 A separation in ice Ic
suggests that there are significant repulsions between each molecule and
its four non-hydrogen-bonded neighbours (Kamb 19656).

Weir et al. (1965) reported an X-ray diffraction study of ice VII at
25 kbar and 25 °C. They also found a body-centred cubic structure.
This implies that ice VII and ice VIII have identical structures, except
that molecular orientations are ordered in ice VIII and disordered in
ice VII.

(c) Vitreous ice and ice Ic
Vitreous ice is formed when water vapour condenses on a surface

maintained below —160 °C; the X-ray and electron diffraction patterns
of the product are diffuse, hence the name vitreous. This substance is
almost certainly a glassy form of water, but practically nothing is known
about its structure. As vitreous ice is warmed, it transforms irreversibly
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to ice Ic. The transformation is accompanied by a release of about 0-2
to 0-3 kcal mol-1 (Ghormley 1956, Dowell and Rinfret 1960). McMillan
and Los (1965) believe they observed a glass transformation while warm-
ing vitreous ice at —139 °C, followed by crystallization into ice Ic at
—129°C.

FIG. 3.9. The structure of ices VII and VIII. Hydrogen bonds are
shown by dotted lines, and the unit cell is outlined by solid lines.
The water molecules are shown in one of the many sets of orienta-
tions they may assume hi ice VII. In ice VIII their orientations are
ordered, but the nature of this order is not yet known. It seems
likely that, in the ordered arrangement, molecules of one framework
have favourable electrostatic interactions with molecules in the

other framework. Redrawn from Kamb and Davis (1964).

Ice Ic, often called cubic ice, can be formed by warming vitreous ice,
by condensing water vapour on a surface held at a temperature between
— 140 and —120 °C (Blackman and Lisgarten 1958), or by warming any
of the quenched high-pressure ices (Bertie et al. 1963 and 1964). What-
ever the method of preparation, ice Ic transforms irreversibly upon
further warming to ice I, with a small enthalpy change.

Blackman and Lisgarten (1958) reviewed the work on vitreous ice and ice Ic up
to 1958. There seems to be no well-defined temperature at which vitreous ice
transforms to ice Ic. Several investigators have observed the transformation at
around —-160 °C, but others have observed it at temperatures as high as —120 °C.
The transformation of ice Ic to ice I has also been observed over a wide range of
temperatures: from about —130 °C (Dowell and Rinfret 1960) to about —70 °C
(Beaumont et al. 1961). Bertie et al. (1963) found that the rate of this transforma-
tion depends on both the temperature and the thermal history of the sample.
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The structure of ice Ic has been studied by X-ray and electron diffrac-
tion. The arrangement of oxygen atoms is similar to that in ice I, and
is identical to the arrangement of
carbon atoms in diamond (Fig. 3.10).
Every water molecule is tetra-
hedrally hydrogen-bonded to its four
nearest neighbours. The nearest-
neighbour distance is 2-75 A at
—130 °C, about the same as in ice I
at the same temperature. As in ice I,
the oxygen atoms are arranged in
puckered layers containing hexa-
gonal rings with the 'chair' con-
formation. Unlike ice I, the stacking
of puckered layers is such that the
hexagonal rings formed by three
oxygen atoms in one layer and three
oxygen atoms in the adjacent layer
also have the 'chair' conformation.

Honjo and Shimaoka (1957) con-
cluded from a comparison of the
observed electron diffraction in-
tensities with those calculated from
various models, that the hydrogen atoms in ice Ic are disordered in the
same manner as they are in ice I. From their electron diffraction studies
these authors estimated that the 0-H distance in ice Ic is about 0-97 A;
the difference between this value and that of the 0-D distance in ice I
of 1-01 A is probably not significant.

(d) Structural characteristics of ice polymorphs: a summary
A number of structural characteristics of the ice polymorphs are sum-

marized in Table 3.4. Some structural features are common to all
polymorphs whereas others are found only in the high-pressure phases.
The features that are common to all known ice polymorphs include:

(1) intact water molecules having H-O-H angles and 0-H lengths
not very different from the corresponding quantities for an isolated
water molecule,f

t The only direct evidence regarding the positions of the hydrogen atoms in ice
polymorphs is for ices I, Ic, II, and V. Nevertheless, the infra-red and Raman spectra
of ices III and VI are sufficiently like those of ices I and Ic to indicate that the water
molecules are intact in these ices and that the H—O—H angles and O—H lengths are

FIG. 3.10. The arrangement of oxygen
atoms in ice Ic; this arrangement is
isomorphous with diamond. The unit cell
is outlined by dashed lines. Redrawn

from Brill (1962).
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(2) water molecules that are hydrogen-bonded to four neighbours,
(3) approximately tetrahedral coordination of the four hydrogen-

bonded neighbours.

Structural features found only in the high-pressure polymorphs include:

(1) non-hydrogen-bonded molecules closer than 4-5 A to each other,
(2) equilibrium hydrogen bond angles differing by more than a few

degrees from 180° (the equilibrium 0—H-0 angles in ices I and
Ic deviate from 180° by at most 7°),

(3) equilibrium nearest neighbour 0—-O separations differing signifi-
cantly from 2-76 A.

One structural feature is found only in the low-temperature region of
phases or in phases which exist only at low temperatures:

(1) ordered hydrogen positions.

In the following section we shall consider the relation between the
structural features of a polymorph and the region of the phase diagram
in which it is stable.

3.3. Thermodynamic properties
(a) Phase relations

With the exception of the metastable polymorphs, each form of ice is
stable in a well-defined region of temperature and pressure. Bridgman's
measurements of the pressure-volume-temperature relations of H20
and D20 outlined the region of stability of each polymorph. His findings,
supplemented with some more recent results, are summarized in Fig. 3.11.
Let us consider the structure of this phase diagram, and also of the
P-V-T surface (Fig. 3.4) of which the diagram is a projection.

A point on a phase diagram where three phases meet is called a triple
point. Eight triple points are known for water (Table 3.5) and seven of
them are shown in Fig. 3.11. The eighth one is the ice I-liquid-vapour
triple point, which occurs at too low a pressure to be shown on the same
scale. Five of the triple points occur at junctures of the liquid with other
phases, and three occur at the junctures of three solid phases. Ices II
and VIII are the only stable phases that cannot be in equilibrium with
the liquid. Still other phases may exist at higher pressures, but Pistorius
et al. (1963) followed the melting curve of ice VII up to a pressure of

reasonably close to those in ices I and Ic (Bertie and Whalley 1964 6, Taylor and
Whalley 1964, Marckmann and Whalley 1964). In addition, the crystal structures of
ices VII and VIII imply that their H-O-H angles are not far from 105°.
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about 220 000 kbar without encountering another triple point. At this
pressure, ice VII melts at 442 °C, 68° above the critical point of steam.

FIG. 3.11. Phase diagram of H2O, based on data of Bridgman (1912, 1935,
1937) and Brown and Whalley (1966). The field of metastable ice IV is shown
by dashed lines; it should be noted that this field was actually mapped by

Bridgman only for D2O. Adapted with changes from Kamb (1965 a).

TABLE 3.5

Triple points of water

Phases in equilibrium

Ice I-liquid— vapour
Ice I— liquid-ice III
Ice I-ice II-ice III
Ice II— ice III— ice V
Ice Ill-liquid— ice V
Ice V-liquid-ice VI
Ice VI— liquid— ice VII
Ice Vl-ice VH-ice VIII

H20

Pressure
(kbar)f

6-1 xlO-o
2-07
2-13
3-44
3-46
6-26

22-0
21

Temp.
(°C)

0-01
-22-0
-34-7
-24-3
— 17-0

0-16
81-6

~5

D2O

Pressure
(kbar)f

2-20
2-25
3-47
3-49
6-28

Temp.
(°C)

-18-8
-31-0
-21-5
-14-5

2-6

f 1 kbar = 10" dyn cm"2 = 986-9 atm.



94 ICE

Bridgman used the Clapeyron equation

to determine the entropy changes for ice-ice transitions from the slopes
of lines on his phase diagram and from his experimental values for the
volume changes of the transitions. The enthalpy and internal energy
changes for a transition are then given by

Bridgman's results are summarized in Table 3.6; we shall refer to them
often in the following discussion.

Bridgman (1935) also studied the pressure-volume-temperature relations of
D2O. He found that the triple points on the D2O diagram all occur at higher
temperatures than those in the H2O diagram (see Table 3.5) and that the transition
lines, except those running approximately horizontally, all run at higher tempera-
tures on the D2O diagram. The differences in the triple-point temperatures for the
isotopes are all about 3 °C. The enthalpy of melting of all ices in the low-pressure
range is greater for the D2O system than for the H2O system. This difference first
increases with increasing pressure and then decreases until, at the liquid-V-VI
triple point, D2O and H2O have the same enthalpy of melting. Volume changes of
melting are generally greater for the D2O system, but the detailed behaviour of
these changes is quite complicated.

Bridgman attributed the higher triple points and enthalpy of fusion of D2O to
the smaller zero-point energy of D2O ice. Owing to its smaller zero-point energy
D2O must absorb more thermal energy than H2O before melting. As noted by
Bridgman, this explanation presupposes that zero-point energies are smaller
in the liquid than in the crystal.

We are now prepared to discuss the relation of the phase diagram to
the structural features of the ice polymorphs (see Section 3.2 (d) for
a summary of these features). Let us begin with the ordered arrange-
ment of hydrogen atoms that is found in ice II and ice VIII, phases not
stable at high temperatures.

Examination of the AS values in Table 3.6 reveals that the transitions
between ice II and its neighbouring phases, and also between ice VIII
and its neighbouring phases, involve entropy changes of 0-8 to 1-2 e.u.
In contrast, all other ice-ice transitions involve average entropy changes
smaller by an order of magnitude. Kamb (1964) and Whalley and
Davidson (1965) explained these AS values in terms of the ordered
positions of hydrogens in ices II and VIII (Section 3.2). Their explana-
tion is based on Pauling's calculation of the entropy in ice I associated
with the disordered arrangement of hydrogen atoms. It will be recalled
from Section 3.1 (6) that this entropy is about 0-8 e.u. Since the hydrogens



TABLE 3.6

Thermodynamics of ice-ice transitions^

Transition
From

I
I

II

II
III

V
VI
VI
VII

To

II
III

III

V
V

VI
VII
vm§
VIII§

T
(°C)

-35
-22
-35

(-60)1
-24
-35
-24
— 17
-24

0-16
81-6

~5
~5

P
(kbar)

2-13
2-08
2-13

(2-08)}
3-44
2-13
3-44
3-46
3-44
6-26

22
~21
~21

AF
(cm3 mol"1)

-3-92
-3-27
-3-53

(-3-70)}
0-26
0-39

— 0-72
— 0-98
-0-98
-0-70
— 1-05

0-000
±0-0005

AS
(e.u.)

-0-76
0-4
0-16

(-0-46)1
1-22
0-92
1-16

-0-07
-0-06
-0-01
~0

1-01
0-93

Aff
(cal mol"1)

— 180
94
40

(-99)t
304
220
288

— 17
-16

4
~0

-282
-260

&E
(cal mol"1)

19
256
219
(83)t
283
200
347
64
65

101
550

-260

PAF
(cal mol"1)

-199
— 162
-179

(-182)t
21
20

-59
-81
-81

— 105
-550

f Data of Bridgman (1912, 1935, 1937), except where noted. Values of AH, AJ5?, and PAF have been calculated by the
present authors.

{ Supercooled ice III.
§ Data of Brown and Whalley (1966) and Whalley et al. (1966).
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in ices III, V, VI, and VII are also disordered, these phases, like ice I, have
an extra entropy of about 0-8 e.u. It thus seems reasonable to ascribe
the entropy increase of 0-8 to 1-2 e.u. in the transition from ice II or
ice VIII to other phases primarily to the entropy of hydrogen disorder.

Accepting this explanation for the AS values, we see that much of the
complexity of the phase diagram of ice is a consequence of the ordered
arrangement of hydrogen atoms in ices II and VIII. The slopes of lines
on the phase diagram, as mentioned above, are described by eqn (3.1).
From Table 3.6 we see that the average entropy changes for the transi-
tions which do not involve ices II or VIII (that is, the I-III, III-V,
V-VI, and VI-VII transitions) are all very small. Hence the corre-
sponding values of dP/dT are all very small, and the lines between these
phases on the phase diagram are nearly horizontal. In contrast, the
AS values for the transitions involving ices II and VIII are much larger.
Thus the boundary lines between these phases and their neighbours are
distinctly non-horizontal. The precise value of each slope is determined
by the ratio of AS to AF. Where AF is negative (as in passing from II
to V) the slope is negative. Where AF is comparatively large (as in the
I-II transition) the slope is more nearly horizontal than where AF is
very small (as in the VII-VIII transition). In short, if hydrogen
ordering did not take place and ices II and VIII were non-existent, all
lines on the ice phase diagram would run nearly horizontally.

In the preceding paragraphs, we have neglected an important point:
though AS for the I-III transition is small when averaged over all
temperatures, the value actually ranges from about —0-46 e.u. at —60°
to about 0-4 e.u. at —22°. Whalley and Davidson (1965) noted that the
change in AS from the lowest to highest temperature is about 0-86 e.u.,
roughly the entropy associated with disorder of hydrogen atoms. This
led them to suggest that the hydrogen atoms of ice III are disordered
near —30 °C, but gradually become ordered as this polymorph is cooled
to —60° C. Spectroscopic data for ice III (Section 3-5) are in accord
with this suggestion.

We have not yet accounted for the fact that ordered hydrogens are
found only in phases that exist at relatively low temperatures. It is
well known that of all possible crystal structures for a substance, the
one that is stable at a given temperature and pressure is the one with
lowest free energy. The difference in free energy, A(?, of two crystal
structures is given by

where AJ57 is the difference in their internal energy. A large internal
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energy, a large volume, or a small entropy will tend to make a particular
crystal form unstable. At higher temperatures, a small entropy contri-
butes more strongly to such an instability. Now the entropy change
associated with the transition from a disordered to an ordered form of
ice is about —0-8 e.u., and hence such a transition increases the free
energy by 0 - 8 X T cal mol"1. This is about 240 cal mol-1 at 300 °K,
comparable in magnitude to the values of A.E for ice-ice transitions
(Table 3.6). As a disordered polymorph is cooled, this TAS term
decreases, and the crystal may eventually transform to an ordered
polymorph. For such a transformation to occur, some ordered crystal
structure must exist with a smaller internal energy (and/or volume)
than the disordered structure. Then during the transformation, the
increase in free energy arising from the T&.8 term of eqn (3.2) is com-
pensated by a decrease arising from the A.E term, and perhaps also from
the PAF term.

In Section 3.2 (d) it was noted that certain structural features are
found only in the high-pressure ices. These include distorted hydrogen
bonds and the close approach of non-hydrogen-bonded neighbours.
Such features permit relatively high densities without necessitating the
complete rupture of hydrogen bonds. The reason these features occur
in the high-pressure polymorphs is apparent from eqn (3.2): at high
pressures, a large volume contributes strongly to the instability of a
polymorph. For example, the relatively small AF for the VI-VII
transition, —1 cm3 mol"1, causes a decrease in PAF of ~ 500 cal mol"1,
simply because P is so large at the transition point. Thus structural
features that permit smaller volumes are favoured in the high-pressure
polymorphs.

Examination of Table 3.6 shows that the high-pressure polymorphs
have larger internal energies than ice I. These larger internal energies
undoubtedly arise from distorted hydrogen bonds and also from closely
situated, non-bonded neighbours that are in repulsive contact. Highly
distorted hydrogen bonds and nearby non-bonded neighbours do not
occur in ice I, because the smaller volume permitted by these features
does not compensate, at low pressures, for the larger internal energy
that they entail.

It was also noted in Section 3.2 (d) that some structural features are
common to all known ice polymorphs. In all polymorphs, for example,
each molecule is hydrogen-bonded to four nearest neighbours, and these
four neighbours form a tetrahedron (somewhat distorted in ices II, III,
V, and VI) about the central molecule. The occurrence of this feature

865389 H
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in all polymorphs demonstrates, of course, that this basic configuration
of water molecules is particularly effective in maintaining a low free
energy over a wide range of temperatures and pressures.

In closing our discussion of the phase diagram of ice it should be men-
tioned that no completely satisfactory explanation has been given for
the stability of ordinary ice I relative to ice Ic. Bjerrum (1951, 1952)
presented calculations, based on a point-charge model for the water
molecule, which indicated that ice I is the more stable structure owing
to electrostatic interactions of the molecules along the c-axis. His
calculations also implied, however, that the hydrogen atoms in ice I
are ordered to some extent, even up to the melting-point, and this
implication is inconsistent with evidence mentioned in Section 3.1.
Pitzer and Polissar (1956) later showed that, if more interactions are
included, Bjerrum's model does not predict a strongly ordered arrange-
ment of hydrogens. They did find, though, that if even a small amount
of ordering takes place, ice I is the more stable form. As no conclusive
evidence exists for any ordering in ice I, the stability of ice I relative
to ice Ic should be regarded as an unexplained fact.

(6) Thermal energy
The heat capacity of ice I has been measured calorimetrically from

2 °K to the melting-point (Giauque and Stout 1936, Flubacher et al.
1960). At very low temperatures the heat capacity approaches zero:
Cp at 2-144 °K, for example, is 0-00042 cal mol-1 °C-1. As the temperature
rises, Cp increases gradually (see Fig. 3.12), until it is about 9 cal mol-1

"C""1 at the melting-point. Upon fusion, Cp doubles. The heat capacity
of the liquid is nearly constant from 0 to 100 °C, but experiences a slight
minimum near 35 °C. Then upon vaporization, Cp falls back to about
9 cal mol-1 °O1.

It is noteworthy that Giauque and Stout (1936) found ice to be sluggish
in reaching thermal equilibrium in the range 85-100 °K. The cause of
this sluggishness is not known.

The enthalpy, entropy, and free energy of H20 at any temperature T,
relative to the enthalpy, entropy, and free energy of ice at 0 °K, can be
found by numerical integration of Cp. The difference in enthalpy of a
substance at T °K and 0 °K, HT—H0, is given by

where A#pc represents the sum of all enthalpy changes for phase transi-
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FIG. 3.12. Enthalpy, entropy, free energy, and isopiestic heat capacity of
H2O at 1 aim pressure. Enthalpy and free energy are in units of kcal mol""1,
heat capacity is in units of cal mol"1 0C-1, and entropy is in units of 2 cal mol"1

"C"1. Data are from Dorsey (1940).

tions occurring between 0 and T °K. The difference in entropy at T °K
and at 0 °K, ST—S0, is given by

where A$po represents the sum of entropy changes for all phase changes
occurring between 0 and T° K. S0 for a perfectly ordered crystal is
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conventionally equated to zero. Ice I, as discussed in Section 3.1 (b), is
not perfectly ordered at 0 °K. The evidence for this rests partly on the
value of S0, which we shall derive presently.

The difference in Gibbs free energy at T and 0 °K, 6T— G0, is given by

It should be noted that since G = H~ TS, G0 equals H0.
Fig. 3.12 shows plots of HT—H0, ST—S0, and GT—G0 for H20 at

atmospheric pressure from 0 to about 650 °K, as determined from the
foregoing equations.

TABLE 3.7

Thermodynamic constants for phase changes of water

(a) Fusion and vaporization of H2O and D2O at 1 atm pressure

Temperature (°K)
AOp, isopiestic heat capacity

change (cal mol"1 °C~l)
AH, enthalpy change (kcal

mol-1)
AS, entropy change (cal mol"1

OQ-l)

AF, volume change (cm3

mol-1)
AjB, internal energy change

(kcal mol" J)

(b) Sublimation of H2O and D,

Fusion

HaO

273-15

8-911*

1-4363*

5-2581*

-1-621<*

1-4363

•0

D20

276-97"
9-48*

1-501*

5-419

At ice I-liquid-vapour

Temperature (°K)

AH, enthalpy change (kcal
mol-1)

AS, entropy change (cal mol—1

A.E?, internal energy change
(kcal mol"1)

triple point

H2O

273-16

12-203*

44-674

11-661"

D20

276-98

12-63/

45-60

12-089

Vaporization

H20

373-15
-10-021

9-7171*

26-0400*

3-01x10*

8-988"

At 0°K to
vapour

H20

0

ll-32«

0

ll-3e

D2O

374-59"

9-927"

26-501

the ideal

D2O

0
11-92"

0

0 Shatenshtein et al. (1960).
6 Rossini et al. (1952).
c Calculated from data reported by Dorsey (1940).
<* Dorsey (1940).
e See Table 3.8.
1 Kirshenbaum (1951).
' Nemethy and Scheraga (1964).

C-1)
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The changes of thermodynamic properties at the melting- and
boiling-point are listed in Table 3.7. Also recorded in this table are the
enthalpy and internal energy changes for sublimation at both the ice
I-liquid-vapour triple point and 0 °K. The values of A# and &E for
sublimation at 0 °K have been obtained by the addition of a series
of enthalpies and internal energies, as illustrated in Table 3.8. The
enthalpy of sublimation at 0 °K is a direct measure of the inter-
molecular energy in ice, and we shall make use of this quantity in our
discussion of the hydrogen-bond energy in Section 3.6 (a).

TABLE 3.8

Energy and enthalpy of sublimation of ice I at 0 °K
(All entries are in units of kcal niol"1)

Contribution H20 D20

Enthalpy of sublimation

S298-i6°(vap)t — S2!18.16-(liq)
•HW-ie^liq) -Smelt, pt.(liq)
Smelt. Et.(liq) -Smeit. pt.(ice)
Smelt. ot.(ioe) — S0 °K(ice)

-[S8M.i6'(vap)t- S0 .K(vap)t]

H0.K(vap)t -S0°K(ice)

10-5196±0-0031a

0-4370±0-00026

1-4363±0-0009C

1-290 ±0-001*
-2-3669 ±0-0007°

11-316 ±0-004

10-8505 ±0-0086°
0-4231 ±0-0007*
1-501 ±0-0046

1-530 ±0-0036

-2-3795±0-0007°

11-925 ±0-01

Internal energy of sublimation

•®273-ie°(vap) — £273.16o(ice)
•SWie-Cice) --E0°K(iee)
= S273.16o(ice)— #0°K(ice)

-[-S?!7s-i6«(vap) --B0"K(vap)]

E0 -K;(vap) — E0 «K(ice)

ll-66d

1-296

-1-61"

11-3

f Ideal vapour.
° Rossini, Knowlton, and Johnston (1940).
6 Whalley (1957). Whalley's values are given in units of joules, and have been

converted by the present authors using the factor 1 joule = 0-239045 cal.
0 Rossini et al. (1952).
A See Table 3.7.
• Bernal and Fowler (1933).

We now must consider the origin of the heat capacity of ice. This
property arises from the excitation of intermolecular vibrations of water
molecules, the intramolecular vibrations being hardly excited at room
temperature (Section !.!(/)). Spectroscopic studies indicate (Section
3.5 (a)) that the intermolecular vibrations of ice are of two distinct types:
hindered translations and hindered rotations (usually called librations).
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Several authors (for example, Blue 1954, Flubacher et al. 1960, Lead-
better 1965) have shown that the heat capacity of ice may be explained
in terms of these motions. As ice is warmed from 0 °K, the hindered
translations are excited first. These vibrations have smaller characteristic
frequencies (average around 200 cm"1) than the librations (500-800
cm"1), so they require smaller quanta of thermal energy for excitation.
Leadbetter's (1965) analysis indicates that below 80 °K the heat
capacity arises almost entirely from excitation of the hindered transla-
tions. By 150 °K, the librations also contribute significantly to the
heat capacity.

The residual entropy of ice was used to establish the positions of
hydrogen atoms in ice (Section 3.1 (6)), so it is desirable to consider
how this property is determined. The residual entropy of ice can be
found by comparing the values, measured by two different methods, for
the entropy of a mole of ideal water vapour at 298-1 °K and 1 atm
pressure. These two methods are:

(1) Calculation from statistical mechanical expressions, using spectro-
scopic data. The resulting quantity, denoted $gpec, is given in
Table 3.9 (a) along with the contributions to it arising from the
translation, rotation, and vibration of water molecules.

(2) Calculation from calorimetric data, using eqn (3.4). The resulting
quantity, denoted $cai, is given in Table 3.9(6) along with its
various contributions.

Now it is apparent from Table 3.9 that $gpec exceeds $oal by several
times the error of determination. Since $speo is the difference between
the entropy of water vapour under the stated conditions and of a hypo-
thetical, perfectly-ordered ice crystal at 0° K, the discrepancy of $spec

and jSggj implies that real ice I is not perfectly ordered at 0 °K. The
difference of $gpec and $cal is called the residual entropy and denoted S0.

(c) P-V-T data for ice I
In this section we present values for the density, coefficients of thermal expansion,

and coefficient of compressibility of ice I.f The density and coefficients of thermal
expansion have been determined both from measurements on bulk ice and from
X-ray diffraction studies of ice crystals. The values obtained from diffraction

f The coefficient of linear expansion, a, is a measure of the fractional change of length
of a substance with temperature. It is denned by at = l^l(8l/8T)p where Z0 is the length
of the sample. The linear expansion of ice I is not necessarily the same in the c-axis
direction as in directions perpendicular to the c-axis. The coefficient of cubical expansion
is defined by /3 = V^(8V/8T)p, where V9 is the volume of the sample. The coefficient of
adiabatic compressibility, yg, is defined by
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studies may be more significant because they depend only on the lattice dimensions,
whereas values based on bulk measurements may also depend on the texture of
the sample.

TABLE 3.9
The residual entropy of ice I

(All entries in e.u.)

(a) Contributions to the spectroscopic entropy (/Sspec) of H2O at 298'1 °K and 1 at
pressure (calculations of Rushbrooke 1962)

^trans
•Srot
Svib

from Sackur— Tetrode equation
from classical partition function
taking v = 3652, 1592, 3756 cm-1

34-61
10-48
0-00

45-09

(6) Contributions to the calorimetric entropy (/Scai) of H2O at 298-1 °K and 1 atm
pressure (calculations of Giauque and Stout 1936)

0-10 °K: Debye extrapolation with hvjk = 192°
10-273-1 °K: graphical integration of OP/T
Fusion at 273-1 °K
273-1-298-1 °K : graphical integration of CP/T
Vaporization at 298-1 °K
Correction for gas imperfection
Compression to 1 atmosphere

0-022f
9-081
5-257
1-580

35-220
0-002

-6-886

44-28 ±0-05

(c) Residual entropy of ice

^spec
<^cal

S0 (residual entropy) J

45-09
44-28

0-81

f The contribution to Scai below 10 °K calculated by the Debye extrapolation is the
same to this accuracy as the directly measured value of Flubacher et al. (1960).

J This value is 0-01 cal mol-1 0C~1 smaller than the value reported by Giauque and
Stout owing to a different value of SBIiec.

The coefficients of expansion determined by La Placa and Post (1960) from
an X-ray diffraction study (Table 3.10 (a)) are in fair agreement with the
bulk measurements recorded in Table 3.10(6). These bulk measurements were
obtained by Leadbetter (1965), who averaged and smoothed the results of Powell
(1958) and Dantl (1962). Leadbetter believes that these values are accurate to
better than 5 per cent above — 173 °C. Lonsdale (1958) obtained a set of thermal
expansion coefficients by smoothing the results of several diffraction studies; but
her results indicate that ft increases at lower temperatures, and are hence not in
accord with the other studies. Nevertheless, it should be noted that Lonsdale's
value for the density of ice I at 0 °C (0-9164 g ml-1) is close to the precise bulk
value of Ginnings and Corruccini (1947; see Table 3.10 (a)).

Dantl's (1962) dilatometric study of single ice crystals indicates that ft becomes
negative as ice is cooled below 63 °K and then passes through a minimum near
35 °K. Many other substances with tetrahedral structures (for example, diamond,
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TABLE 3.10

P—V—T data for ice I at atmospheric pressure

(a) From measurements on bulk ice
Property

Density, p0

Coefficient
(g ml-')

of cubical expansion,
ft (units of 10~6 "C-1)

Coefficient of adiabatic compres-
sibility, ys

(units of 10-" cm2 dyn-1)

.Temp. (°C)

0

-13
-53
-93

-133
-173
-213
— 253

-13
-53
-93

-133
-173
-213
-253

Value

0-91671 ±0-00005

152
125
96
69
39
-3
-9

12-8
12-2
11-7
11-3
11-1
10-9
10-9

Reference

a

b

0

(6) From X-ray diffraction of iced

Temp. (°C)

-10

-20

-40

-60

-80

-100

-120

-140

-160

-180

Density, p0
(g cm-3)

0-9187

0-9203

0-9228

0-9252

0-9274

0-9292

0-9305

0-9314

0-9331

0-9340

Coefficient of linear
expansion, a

J_c-axis

46

45

44

40

34

22

12

32

14

(10-6 "C-1)

He-axis

63

48

41

35

30

27

25

23

22

Coefficient
expansion,

156

138

129

115

99

71

50

88

51

of cubical
£(10-6°C-i)

a Ginnings and Corruccini (1947).
6 Calculated by Leadbetter (1965) from data of Powell (1958) and Dantl (1962).
c Calculated by Leadbetter (1965) from data of Bass et al. (1957) and Zarembovitch

and Kahane (1964).
d Data of La Placa and Post (1960). The present authors have computed values of

p0 and /! from these data, taking the molecular weight of H2O as 18-01534 and Avo-
gadro's number as 6-02380 x 1023.
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silicon, germanium, vitreous silica, and InSb) also exhibit negative thermal
expansion at low temperatures (Collins and White 1964). This phenomenon is
presumably associated in some way with the excitation of hindered translational
vibrations that occurs in this temperature region. Dantl could detect no aniso-
tropy in tho thermal expansion of ice, and found the thermal expansion of D2O to
differ only slightly from that of H2O.

FIG. 3.13. The static dielectric constant of ice I, e0, as a function of temperature.
X X Polycrystalline sample (Autry and Cole 1952).
O O Single crystal; electric field parallel to c-axis 1 (Humbel et al.
• • Single crystal; electric field perpendicular to c-axis/ 1953).

The values for the coefficient of adiabatic compressibility in Table 3.10 (a) were
derived by Leadbetter (1965) from elastic constants. Leadbetter believes that the
uncertainty in these coefficients is not greater than 10 per cent. Readers interested
in the mechanical and elastic properties of ice are referred to the reviews by Glen
(1958) and Stephens (1958).

3.4. Electrical properties and self-diffusion
(a) Dielectric constant and dipole moment

The static dielectric constants, e0, of both polycrystalline and single
crystals of ice I have been carefully determined (Auty and Cole 1952,
Humbel et al. 1953). Fig. 3.13 shows that e0 increases with decreasing
temperature and that e0 parallel to the c-axis is slightly larger than e0

perpendicular to the c-axis. The dielectric constant of polycrystalline
ice is higher at 0 °C than that of water, even though the decrease in the
volume of water on melting would be expected to cause a change in the
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opposite direction. The application of pressure to ice I increases e0, as
is shown in Fig. 3.14.

The dielectric properties of the high-pressure polymorphs were
investigated by Wilson et al. (1965) and Whalley et al. (1966). Wilson
et al. measured values of e0 for ices II, III, V, and VI over a range of
temperatures and pressures; their results for a constant temperature
of —30 °C are shown in Fig. 3.15. They found that, with the exception
of ice II, each of these polymorphs has a larger value of e0 than all poly-
morphs stable at lower pressures. Ice II has a low value of e0 (4-2),
which is independent of temperature and pressure. Whalley et al. (1966)
found that e0 for ice VII at 22 °C and 21 kbars is roughly 150; this is
somewhat smaller than e0 of ice VI extrapolated to the same temperature
and pressure (about 185). These authors also found that ice VIII, like
ice II, has a very small value of e0.

The large dielectric constants of ices I, III, V, VI, and VII tell us that
water molecules in these polymorphs are constantly changing their
orientations as a result of thermal agitation. In the following section
we shall consider the rate and the mechanism of these changes; here we
use Kirkwood's theory (Kirkwood 1939) to interpret the observed e0

values in terms of the polarity and local correlation of H20 molecules
in ice.

Though Kirkwood's theory is strictly applicable only to isotropic
substances composed of non-polarizable dipoles (e.g. see Buckingham
1956), it can be used to give a semi-quantitative description of the
dielectric properties of ice. For highly polar substances Kirkwood's
equation assumes the formf

where N* is the number of molecules per unit volume, kT is the product
of Boltzmann's constant and the absolute temperature, and m and m*
are quantities related to the molecular dipole moment as follows:

1. m is the average dipole moment of an H20 molecule surrounded
by its neighbours. Its magnitude is greater than that of [x, the dipole
moment of an isolated molecule, because in ice each molecule is further
polarized by the electrostatic fields of its strongly polar neighbours (see
Fig. 3.16). If F is the uniform electrostatic field arising from neigh-
bouring molecules, and a is the polarizability of the central molecule,
then m = ft-f aF. We shall discuss the probable magnitude of m below.

f See Edsall and Wyman (1958) for a discussion and simplified derivation of this
equation,



FIG. 3.14. Pressure dependence of the static dielectric constant (ec), dielectric
relaxation time (T<J), and logarithm of the direct current conductivity (KDC)
of ice I at — 23-4 °C. Data of Chan et al. (1965). The dashed line is discussed in

the text. Adapted with changes from Chan et al. (1965).

Fia. 3.15. Pressure dependence of the static dielectric constant, e0, of ices I, II,
III, V, and VI at —30 °C. Redrawn from Wilson et al. (1965).
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2. m* is the vector sum of the dipole moment of an arbitrary 'central'
molecule and the dipole moments of the neighbouring molecules. As
can be seen from Fig. 3.16, the network of tetrahedral hydrogen bonding
in ice causes neighbours to be aligned in such a way that components of

FIG. 3.16. The magnitude of the dipole moment, m, of an H2O molecule in ice
is greater than the corresponding quantity for an isolated water molecule, fi,
because of the electrostatic fields arising from dipolar neighbouring molecules.
Here an arbitrary central molecule is shown with its four nearest neighbours.
The electrostatic field, F, arising from the neighbours induces an additional
moment aF (where a. is the molecular polarizability) in the central molecule.

their dipole moments lie in the direction of the dipole moment of the
central molecule. Clearly m* depends both on the magnitude of m
and on the relative orientations of neighbouring molecules. A function
of m and m* that depends only on the relative orientations of neigh-
bouring molecules is g, the Kirkwood correlation parameter, given by

where m = |m|, Nt is the number of neighbouring molecules in the ith
coordination shell, and (cos %) is the average cosine of angles formed by
the dipole moments of molecules in the ith shell with the dipole moment
of the central molecule. We shall discuss the probable magnitude and
significance of g below.

It should be noted that both m and m* refer to the substance in the
absence of an external electric field.
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By combining eqns (3.6) and (3.7), we can write Kirkwood's equation
in the form

The physical meaning of this expression is that the dielectric constant
of a substance depends not only on the magnitude of the permanent
dipole moment of its molecules and the number of dipoles per unit
volume, but also on the extent to which the molecules induce additional
moments in each other, and the extent to which the directions of their
dipoles are correlated. A strong correlation of dipole directions (that is,
a large value of g) means that when one molecule is aligned with the
external field, its neighbours tend to be aligned also. Ice has a large
dielectric constant because its tetrahedral structure leads to both a large
dipole moment in each molecule (large m) and a strong angular correla-
tion between the dipole moments of its molecules (large g). The inverse
relationship between dielectric constant and temperature in eqn (3. 6 a)
arises, of course, from the opposition of thermal agitation to alignment
of dipole moments in the direction of the applied field.

Let us consider the magnitude of m in ice I. In contrast to p, m is
not accessible to direct measurement. Onsager and others have estimated
m from the dielectric properties of ice, and some investigators have made
direct calculations of m. According to Onsager's theory of dielectrics
(1936; Bottcher 1952, p. 70), the magnitude of m in strongly polar
dielectrics is related to the magnitude of JJL by

where n is the refractive index of the medium. For ice I this equation
predicts a value for m of 2-3 D. It should be noted that Onsager's theory
depicts the central molecule as a point-dipole at the centre of a spherical
cavity about the size of the molecule, in a continuous dielectric medium.
This model is almost certainly a poor one for an open, hydrogen-bonded
structure such as ice, so it is doubtful that eqn (3.8) gives an accurate
value for m. A larger estimate of m (3-8 D) was made by Onsager and
Dupuis (1962) from a consideration of the temperature dependence of
e0. This value is twice as large as ^ (1-83 D) and indicates that the
electrostatic field arising from neighbouring molecules is very large.

A direct calculation of m based on a multipole-moment model of the
water molecule predicts a magnitude of 2-6 D (Coulson and Eisenberg



110 ICE

1966 a). In this work the electric field acting on the central molecule
was found to be about 0-52 X 106 e.s.u. cm-2 (roughly 150 000 000 V cm-1),
and to have the same direction as the permanent dipole moment of the
central molecule. This means that ice molecules are oriented so that the
energy of interaction of their dipole moments with the electric field
produced by their neighbours is a minimum—that is, binding energy
a maximum. Of the total field acting on the central molecule, nearly
20 per cent arises from the quadrupole and octupole moments of the
neighbours, and about 20 per cent arises from second and further
neighbours.

Now let us consider the magnitude of g for ice I. From eqn (3.7), it is
evident that g would equal unity if neighbouring molecules were ran-
domly oriented with respect to the central molecule. Owing to the
pattern of hydrogen bonding in ice, however, neighbouring molecules
tend to have their dipole moments pointing in the same direction as the
central molecule (Fig. 3.16); hence (cosy^) of eqn (3.7) is large and
positive, and hence g is greater than unity. Progress in computing g from
the known structure of ice I was reviewed by Hollins (1964); he concluded
that, to a first approximation, this quantity is 3. According to Hollins,
the 4 nearest neighbours contribute 1-333 to g, the 12 next-nearest
neighbours contribute 0-44, and the 25 third-nearest neighbours con-
tribute about 0-48.

Given the values of m and g we can calculate the temperature depen-
dence of e0 from Kirkwood's theory, using eqn (3.6 a). Taking m = 2-6 D
and g = 3 we find e0 ̂  2-8 X Wl/T. Hollins (1964) found that the best
fit to the data of Auty and Cole (1952), assuming a 1/T temperature
dependence of the data, is e0 ̂  2-50 x 104/T.

Kirkwood's theory is also helpful in interpreting the pressure depen-
dence of e0. The observed increase of e0 with pressure (Fig. 3.14) may
arise from an increase in density (more dipoles per unit volume), an
increase in m, or an increase in g. The effect of increased density on e0 is
given approximately by the dashed line in Fig. 3.14. In drawing this
line we have assumed that the isothermal compressibility of ice I is
11-1 X 1Q-12 cm2 dyn-1. The dielectric constant would follow this line
if the increase in number of dipoles were the only consequence of applied
pressure. It appears that the rate of increase of e0 with pressure is
somewhat greater than that indicated by this line, so that m or g may
also increase during compression. An increase in m is to be expected
since the field acting on a molecule grows as its neighbours move
closer.
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A more quantitative interpretation of the pressure dependence of e0

was given by Chan et al. (1965). They assumed that m is given by
eqn (3.8); then they differentiated eqn (3. 6 a) with respect to pressure.
They simplified the resulting expression by assuming that the refractive
index, n, is related to the molecular polarizability by the Lorenz-
Lorentz equation. The pressure dependence of e0 may then be written

where yT is the coefficient of isothermal compressibility. The first
term on the right in this equation represents the increase of e0 with
pressure that arises from the combined effects of more dipoles per unit
volume and of larger induced dipole moments. The next three terms
describe the effect on e0 of the changes of a, ju,, and g with pressure.

The experimental results of Chan et al. (1965) indicate that (8 In e0j8P)T

is 14(±3)xlO-8 bar-1 at —23-4 °C over the pressure range 0-2 kbar.
Now if we take yT == 11-1 x 10~12 cm2 dyn-1 andw2 = 1-77, we find that
the first term on the right in eqn (3.9) is 17 x 10~6 bar-1. Thus it seems
that the other three terms are small or nearly cancel one another.

Among the high-pressure polymorphs, ices II and VIII are the only
ones with small values of e0. Apparently the H20 molecules in these
polymorphs are 'frozen in', that is, they are unable to change their
orientations in the presence of an applied field. This conclusion is con-
sistent with other data, which indicate that orientations of molecules
in these ices are ordered (Section 3.2).

The e0s of the other high-pressure polymorphs exceed that of ice I.
The greater density of these polymorphs results in more dipoles per unit
volume and in larger values of m; both these factors tend to increase e0.
Wilson et al. (1965) and Whalley et al. (1966) argued that the g values for
these polymorphs are not very different from the g value for ice I. They
estimated g for each polymorph from eqn (3.6 a), after first estimating m
from eqn (3.8). This procedure gave g values between 2-4 and 3-4 for
ices I, III, V, VI, and VII. Wilson et al. (1965) believe that this narrow
range of g values constitutes evidence that ices III, V, and VI, like ice I,
are four-coordinated. Other arrangements of neighbouring molecules
would entail different degrees of correlation and consequently different
g values.

•f Chan et al. (1965) assumed that the last term of this equation is zero.
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(6) Dielectric polarization and relaxation
The large static dielectric constants of most ice polymorphs indicate

that the molecules in these crystals are able to change their orientations.
Studies of the frequency dependence of the dielectric constant, e, have
yielded information on the rate and mechanism of these reorientations.
Let us consider the general behaviour of e as a function of the frequency
of an applied electric field, and then the data on the frequency depen-
dence of € in ice. We shall discuss the probable mechanism of reorienta-
tion of the molecules at the end of the section.

The frequency dependence of e
At relatively low frequencies of the applied field, over 95 per cent of

the dielectric constant e arises from reorientations of H20 molecules.
As the frequency is increased, molecules do not reorient fast enough to
come into equilibrium with the field, and the dielectric constant falls
to a much smaller value, ex. This phenomenon is called dielectric dis-
persion, and can be described for many substances (including water
and ice I) by a simple equation (e.g. Smyth 1955):

where rd is the dielectric relaxation time, and u> is 2ir times the frequency
of the applied field in cycles per second. The quantity rd reflects the
time for decay of macroscopic polarization of the substance when the
external field is removed. It is somewhat larger than the molecular
rotational correlation time, rrd, which is the average interval between
reorientations of a given molecule. Theoretical work of Glarum (1960)
and Powles (1953; see eqn (4.21)) suggests that Trd ̂  0-7rd for ice and
water. The value of rd for ice I at 0 °C is about 2 X 10~5 s, so that an
average H20 molecule experiences roughly 105 reorientations every
second.

It is important to realize that the reorientation of molecules is caused
by thermal agitation, and takes place whether or not an alternating
electric field is applied to the system. The applied electric field, in fact,
biases the orientation of molecules to only a very small extent. This was
noted for the case of ice by Debye (1929), who based his argument on
the fundamental equation of electric polarization

Here P is the electric dipole moment per unit volume induced by the



applied field E. Debye used this equation to show that if ice at 0° C is
placed in an electric field of 1 V cm."1, the net degree of orientation of
the water dipoles is equivalent to the rotation by 180° of only one
molecule in 106.

The high-frequency dielectric constant, e^, is temperature-indepen-
dent. We shall discuss this quantity below.

Frequency dependence of e of ice polymorphs

The dielectric relaxation times of the ice polymorphs in which mole-
cules are free to rotate may be expressed in the form

where P0 is a reference pressure, and A, EA, and AF* are the experi-
mentally determined parameters that are listed in Table 3.11. The
quantities E^ and AF* are called the energy and volume of activation
for dielectric relaxation.

The dielectric relaxation time of ice I at 0 °C is 2xlO~ 5 s; as the
temperature is lowered it increases rapidly and by —65 °C it is about
4x 10~2 s. Pressure increases rd (that is, AF1 is positive), as shown by
Fig. 3.14. The relaxation rates of ices III, V, and VI are about 100 times
faster than that of ice I near — 40 °C (Wilson et al. 1965). In other words,
H20 molecules in these ices change their orientations 100 times faster
than ice I molecules. At 22 °C and 21-4 kbar ice VII relaxes about three
times faster than ice VI (Whalley et al. 1966).

Wilson et al. (1965) found that the relaxations of the high-pressure
ices cannot be precisely described by a single relaxation time for each ice.
The parameter a in Table 3.11 indicates the deviation of the frequency
dependence of each ice from that given by eqn (3.10). This parameter
can assume values from 0 (for a single rd) to 1 ; the largest a among the
ices is 0-05 for ice VI.

The high-frequency dielectric constant, em, for each ice is also given
in Table 3.11. For ice I, em is 3.1. As we shall see presently, about
1-7 units of €„, represent electronic polarization, so the difference
3-1 — 1-7 must arise from atomic movements. This difference is much
greater than that observed for most substances (Smyth 1955). Such
differences are usually ascribed to the relative displacements of the
atoms of each molecule by the field, but in the case of ice these dis-
placements can account for only a fraction of the difference. The greater
part of the difference arises from the bias of intermolecular vibrations of

855339 I
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TABLE 3.11
Parameters for the dielectric relaxation of ice polymorphs. P0 and T0 are the pressure and temperature at the centre of the

region to which the parameters apply

Ice

I (H20)
I (DaO)
III
V
VI
VI
VII

^0
(kbar)t

0
0
3
5
8

19
22

T*
(°C)

-23-4

-30
-30
-30

22
22

«»

3-1

3-5
4-6
5.1

EA.
(kcal mol"1)

13-25
13-4
11-6
11-5
11-0
13-6
11-6

A
(<0

5-3 X 10-"
7-7x10-"
9-5x10-"
2-5 x 10-"
7-0 x 10-"
4-0 x 10~17

6-4 x 10-16

AS«
(e.u.)§

9-8

13-1
11-3

9-2
15

9-2

AF*
(cm3 mol-1)

2-9

4-5
4-8
4-4

2-5

at
(at -30°C)

0
0
0-04
0-015
0-05

> 0

Distinct
lattice sites

1
1
2
4
2
2
1

References

a, 6
a
e, d
c, d

c, d
e
e

f These values apply to eqn (3.12).
§ Calculated by Whalley et al. (1966) from the relation AS* = — E \a(AekTjh).
a Auty and Cole (1952).
6 Chan et al. (1965).
c Wilson et al. (1965).
<* Davidson (1966).
« Whalley et al. (1966).
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HaO molecules by the external field. From absolute intensities of infra-
red absorption, Whalley (1967) found that the i>T band associated with
hindered translations of molecules (Section 3.5) accounts for most of the
difference, and that the VL band associated with librations also accounts
for some. Since these vibrations are very rapid compared to molecular
reorientations, the polarization associated with them persists at fre-
quencies higher than the dielectric dispersion.

For applied fields of optical frequencies, e is equal to the square of the
refractive index, about 1 • 7 . Ice I, being an uniaxial crystal, is birefringent.
The birefringence, however, is very small: at — 3 °C the index of refrac-
tion of the sodium D-line for the ordinary ray (directed along the c-axis)
is 1-3090 and that for the extraordinary ray (directed perpendicular to
the c-axis) is 1-3104 (Merwin 1930). Dorsey (1940, p. 484) pointed out
that the specific refraction

where p0 is the density, is remarkably constant for all three phases of
H20 stable at atmospheric pressure. The values of the specific refraction
for sodium D-line radiation are:

Ice I — 3 °C ordinary ray 0-2097 cm3 g-1

extraordinary ray 0-2105
Liquid 20 °C 0-2061
Vapour 110°C 0-2088

The small spread of these numbers indicates that the mean electronic
polarizability of H20 does not change with phase.

Mechanism of molecular reorientation in ice
We are now ready to ask how H2O molecules reorient in ice. An

answer now widely accepted was proposed by Bjerrum in 1951. Bjerrum
postulated the existence of a small concentration of orientational defects
in ice to account for the reorientations. According to this idea, a pair of
D- and L-orientational defects is formed when thermal agitation forces
an H2O molecule to rotate through 120° around one of its 0-H— -O
axes, thus leaving one pair of neighbouring O— - 0 atoms with no inter-
vening hydrogen (L-defect), and another pair of neighbours O-H H-0
with two hydrogens (D-defect). A subsequent similar rotation of one of
the adjacent molecules separates these two defects. This process is
depicted schematically in Fig. 3.17. The reorientation of H20 molecules
is supposed to occur at these defect sites, each reorientation causing
the defect site to move one lattice position.
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The actual molecular configuration in the neighbourhood of a defect is
notknown, but it is certainly not exactly as shown in Fig. 3.17. The non-
bonded hydrogen atoms facing each other in a D-defect must push their
respective H20 molecules apart. A simple calculation (Eisenberg and
Coulson 1963) indicates that a balance between the repulsion of these

Fio. 3.17. Schematic representation of the formation of a pair of D- and L-
defects in ice I. The c-axis is perpendicular to the page.

hydrogens and the strain energy of bent hydrogen bonds in the region
of the two H20 molecules is achieved when each H20 molecule has moved
about 0-5 A away from the other. Other investigators have considered
the possibility that one (Dunitz 1963) or both (Cohan et al. 1962) of the
molecules forming a D-defect are rotated away from the positions shown
in Fig. 3.17. Still other investigators have suggested that the orienta-
tional defects form associations with the ionic defects that we shall dis-
cuss in the next section (Eigen and De Maeyer 1958, Onsager and Dupuis
1962), or with interstitial molecules (Haas 1962).

Direct evidence for D- and L-defects has not been found. Nevertheless,
there are several reasons for believing that they do exist.

(1) There is good a posteriori agreement of the defect theory with the
observed dielectric properties and conductivity of ice, as well as with the
same properties of solid solutions of HF in ice. The development of the
kinetic theory and interpretation of experiments in terms of the defects
was carried out by Granicher et al. (1957), Jaccard (1959), Onsager and
Dupuis (1962), and others. Granicher (1963) and Jaccard (1965) have
given brief summaries o£,£his work.

(2) Calculated values of EA (Bjerrum 1951) and AF* (Chan et al. 1965)
for dielectric relaxation, based on models of the defect, are in accord
with the experimental values.

(3) There is no other plausible mechanism for reorientation of ice
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molecules. Bjerrum (1951) and Granicher (1958) considered and rejected
many alternate mechanisms. Mechanisms involving only ionic defects,
once believed to account for the polarization of ice crystals in an electric
field, were shown by Bjerrum (1951) to lead to polarization of the wrong
sign. Another mechanism, proposed by Frank (1958) and involving a
local 'melting' of the crystal, would be expected to have a negative AF*
instead of the positive value actually observed (Chan et al. 1965).

Bjerrum (1951), Jaccard (1959), and others have deduced some of the properties
of orientational defects in ice I. Bjerrum noted that n, the mean number of
reorientations per molecule per second, is roughly equal to 1/Td at —10 °C, or
about 2 x 104. He then expressed n as

where c is the concentration of orientational defects (in units of number of defects
per molecule) and n' is the number of reorientations per defect per second. The
concentration of defects at —10 °C is only about 2 x 10~7 (Table 3.12), so that the
rate of turns of molecules at the defects must be very large, about 1011 s"1.
Apparently a molecule waits a relatively long time (about 5 X 10~5 s) for a defect
to migrate to its lattice site, but when one arrives, it reorients very rapidly (in
about 10-11 s).

Bjerrum (1951) pointed out that E\, the experimental energy of activation for
dielectric relaxation, is related to both the energy required to form a pair of
orientational defects, -EbL> and the energy required to produce a reorientation at
a defect, E'. Since both c and n' increase exponentially with temperature, EA. is
given by

Jaccard (1959) inferred values of £XIL and E' from experiments on ice and solid
solutions of HF in ice; these values are given in Table 3.12. Bjerrum further noted
that the formation of a pair of D- and L-defects corresponds to the reaction
2N -> D + L, where N represents a normal hydrogen bond. If we let E$, -Ejo, and EL
represent the energies of formation of, respectively, a hydrogen bond, a D-defect,
and an L-defect from separated H2O molecules, we can write

Various authors (including Bjerrum (1951), Cohanetal. (1962), Dunitz (1963), and
Eisenberg and Coulson (1963)) have estimated E$ and E& from models for the
defects.

The mechanism of dielectric relaxation in the high-pressure poly-
morphs is probably similar to that in ice I. The values of EK, A$l, and
AF* for ices III, V, VI, and VII are near enough to the corresponding
values for ice I to indicate that orientational defects are of central im-
portance in their relaxation processes. Wilson et al. (1965) suggested
that the lower values of EA for ices III, V, and VI indicate weaker
hydrogen bonds in these phases. Weaker hydrogen bonds would result
in smaller values of ̂ DL or E'', or both, and therefore in a smaller EA.
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Davidson (1966) and Wilson et al. (1965) suggested that a correlation
exists between the dispersion parameter « and the number of different
types of crystal site in a polymorph (Table 3.11). They reasoned that
the molecules having different environments are likely to have different
relaxation times, and hence have dielectric relaxations that can be
described only with a value of a greater than zero.

TABLE 3.12

Derived properties of orientational and ionic defects in ice I at —10 °C.
(Compiled by Granicher 1963)

Property Orientational defect Ionic defect

Reaction equation
Energy of formation

(kcal/mol-of-defect pair)
Concentration of defects

(mol-of-defect/mol-of-ice)
Activation energy of diffusion

(kcal/mol)
Mobility (cm3 V"1 s"1)
Mobility ratio

2N^D + L
-2?DL = 15-7 ±0-9

c = 2 x 10-'

E' = 5-4±0-2

^ = 2 x 10-"
/i^Y/LlD > 1

2H2O ̂  H3O+ + OH~
E± ̂  22 ;£ 3

~ 3 x 10~12

~ 0

^+ = 8 x 10-2

li+lliT ~ 10 to 100

(c) Electrical conductivity
Ice I exhibits a time-independent direct-current conductivity K. The

value of K for H20 ice I at —10 °C is about 10~9 Q-1 cm-1, an order of
magnitude smaller than K for liquid water at the melting-point. Electroly-
sis experiments (Workman et al. 1954, Granicher et al. 1957) indicate that
ions (presumably protons) are the sole charge carriers: hydrogen gas is
formed at the negative electrode and oxygen gas at the positive electrode
in amounts predicted by Faraday's law. Thus the conductivity is
intimately related to the ionic dissociation of H20 molecules. This
dissociation may be represented by the equation

where &D is the rate constant for dissociation and &R is the rate constant
for recombination. The ratio of these constants, K^o, is the equili-
brium constant for the dissociation reaction.

Eigen and De Maeyer (1958, 1959) and Eigen et al. (1964) studied
the dissociation reaction in ice by a series of elegant experiments. Let us
consider the results of their experiments and the implications of the
results for the mechanism of charge transport in ice. For a full description
of these experiments, and for a detailed and lucid discussion of charge
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transport in ice and water, the reader is referred to their original papers.
These papers also include a review of earlier work.

Eigen and his colleagues first noted that the electrical conductivity is
related to the product of the concentration and the mobility of the
charge carriers, and thus that conductivity measurements alone cannot
provide such details of reaction (3.14) as JcD, &R, and^"H(|O. They then
determined &D from the 'saturation current' at high field strengths. In
this experiment, a strong electric field is applied to a thin layer of ice;
the resulting current is determined solely by the dissociation of water
molecules, and is thus related directly to k^. They determined kn by
relaxation methods, and combining this quantity with &D they found
-K0lO and consequently the concentration of protonic charge carriers
in ice. By combining other information from their saturation-current
studies with the conductivity measurements they were able to determine
the mobility of the protonic charge carriers. Their results are summarized
in Table 3.13 and in the right-hand column of Table 3.12.

TABLE 3.13

Ionic dissociation and migration in ice I according to Eigen et al. (1964)

(All entries are for - 10 °C.)

Property

Direct current conductivity K (Q"1 cm"1)
Activation energy for conductivity (kcal mol"1)
Kate constant for dissociation of H2O (D2O),

Rate constant for recombination of H2O (DaO),
fcB (mol-i 1 s-1)

Equilibrium constant for dissociation reaction,
-KH20 (mol I-1)

Mobility of proton (deuteron) /n (cm2 V"1 s-1)

H2O ice I

1-OxlO-"
11
3-2xlO-«

0-86 x 1013

3-8 x 10-22

~0-08

D2O ice I

3-6 XlO-11

13
2-7 x 10-"

0-13 XlO13

0-2 x 10-22

~0-01

The molecular mechanism for conductivity in ice I almost certainly
involves ionic defects (Bjerrum 1951, Eigen and De Maeyer 1958) that
are formed when an H20 molecule in the lattice dissociates and one of its
protons jumps to an adjacent molecule (Fig. 3.18). Subsequent proton
jumps result in the migration of the ionic defects throughout the crystal.
It is clear from Fig. 3.18, though, that once a proton has followed a given
path through the crystal toward the negative electrode, no other proton
may follow the same path until H20 molecules along the path have
reoriented. This does not cause interruption of conduction, because
reorientations are much more frequent at a given molecule than are
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proton jumps. We noted in the preceding section that each molecule
experiences about 2x 104 reorientations per second at —10 °C. We can
estimate the number of proton jumps per second at a given molecule
from Eigen's (1964) estimate of the mean time of residence of a proton
with a given H3O molecule in ice (~ 10~13 s) and from the concentration
of ionic defects (~3xlO-12 molecule-1 at —10 °C; see Table 3.12).

FIG. 3.18. Schematic representation of the formation and
migration of ionic defects in ice I.

The quotient of these numbers (~ 30) is a rough estimate of the mean
number of jumping protons that arrive each second at an ice molecule
at —10 °C. Thus, although the rate of proton jumps is very rapid, the
concentration of jumping protons is so small that the frequency of jumps
at each molecule is small. The arrival of a jumping proton at a molecule
is a rare event compared to the arrival of an orientational defect.

Eigen and De Maeyer (1958) and Onsager and Dupuis (1962) noted
that some of the ionic defects in ice may be 'trapped' and may thus make
no contribution to the conductivity. A possible example of a trapped
H30

+ ion would be one which is situated next to an L-defect. The attrac-
tion of a lone-pair of electrons on the H20 molecule in the L-defect for
the positive charge on the adjacent H30

+ ion would immobilize both the
ionic defect and the orientational defect.

(d) Self-diffusion^
Kuhn and Thiirkauf reported in 1958 that deuterium (2H) and 180

tracers diffuse in ice I at the same rate. Soon afterwards Dengel and
Riehl (1963) and Itagaki (1964) discovered that tritium (3H) diffuses at
about the same rate as the other tracers. These findings suggest that
intact water molecules are able to migrate through the ice lattice in some
fashion. Since this self-diffusion must involve defects in the lattice, it
is convenient to consider this property along with dielectric relaxation
and direct current conductivity, phenomena which also proceed by

f Data on the self-diffusion in ice were summarized briefly by Kopp et al. (1965), who
also discussed diffusion of HF in ice.
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lattice defects. The self-diffusion coefficients measured by means of the
three tracers, and the activation energy for diffusion of tritium, are given
in Table 3.14.

TABLE 3.14

Self-diffusion in ice I

Authors

Kuhn and
Thiirkauf
(1958)

Dengel and
Riehl (1963)

Itagaki (1964)

Tracer

18O, aH

3H

3H

Temperature
(°C)

-2

0 to —33

-10 to -35

Coefficient of self-
diffusion (cm2 s""1)

10x10-"

2x10-" at -7°C

2-8xlO-nat -10°C

Activation
energy, E&
(kcal mol"1)

13-5±1

15-7±2

The molecular mechanism of self-diffusion in ice is not known for
certain. Haas (1962) proposed that self-diffusion takes place via inter-
stitial molecules that are associated with the D- and L-orientational
defects described in Section 3.4(6). In support of his proposal, Haas
noted that the activation energies for self-diffusion and dielectric relaxa-
tion are nearly equal. From the magnitude of the self-diffusion coefficient
he inferred that, if a migrating interstitial molecule moves by jumps of
one lattice position, its rate of migration would be about equal to the
rate of migration of orientational defects. Onsager and Runnels (1963)
extended calculations of the sort made by Haas and came to a contrary
conclusion: migration of the diffusing molecules is an order of magnitude
faster than the migration of orientational defects. They thus rejected
Haas's proposal that most interstitial molecules migrate in association
with orientational defects. They suggested instead that a water molecule
diffuses several lattice positions 'in the interstitial space' and then
occupies a normal lattice position. They based this proposal on nuclear
magnetic resonance spin-lattice relaxation times, but did not publish
their detailed arguments. They believe that the average length of a
diffusional jump is about three lattice positions.

3.5. Spectroscopic properties
(a) Vibratiotial spectrum of ice I

The vibrations of ice crystals may be studied by means of any radiation
or particle that exchanges energy with the crystal. Electromagnetic
radiation in the form of infra-red and Raman spectroscopy has been
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extensively used for this purpose. Other techniques, such as scattering
of cold neutrons and analysis of heat capacity curves, have recently
yielded some information on vibrations of ice, but infra-red and Raman
spectroscopy remain the most useful methods.f In this section we
describe the general appearance of the infra-red spectrum of ice and the
interpretation of the spectrum in terms of crystal structure and atomic
motions. Much less attention is devoted to the other techniques
because to date they have provided very little additional informa-
tion.

Table 3.15 lists the prominent bands of the vibrational spectrum of
ice; most of these can be identified in the infra-red spectra shown in Fig.
3.20 on p. 128. Three broad and intense bands are found at frequencies
between 50 and 1200 cm-1, a spectral region in which water vapour
exhibits no absorption other than the fine lines indicative of transitions
between rotational states. Hence these three bands must be due to
intermolecular vibrations. The frequency region 1200-4000 cm-1,
containing the absorptions of the fundamental modes of water vapour,
shows bands in ice with maxima at about 1650 and 3220 cm-1; the former
lies at somewhat higher frequencies than the v2 mode in the vapour, and
the latter at considerably lower frequencies than the v1 and va vapour
modes. There is in addition a band near 2270 cm-1, often called the
'association band', which does not correspond to any mode in the vapour
spectrum.

The vibrational spectrum of ice is not easily interpreted despite the
simplicity of the constituent water molecules and the abundance of
information on their relative positions in the crystal. The reason for
this is that the normal modes of vibration of an ice crystal are unknown
and, as a result, one cannot rigorously assign each absorption band to
a particular set of atomic motions. The progress that has been made in
assigning bands has come largely by comparing the vibrational spectrum
of ice to that of water vapour. To discuss these developments, we must
first outline the theory of vibrations of molecular crystals. The theory
may seem abstract, but when we apply it to the interpretation of the
spectrum of ice below, its physical significance ought to become quite
clear.

f Ockman (1958) compiled a comprehensive review of the infra-red and Raman
spectroscopy of ice up to October 1957. Important work since 1957 includes the far
infra-red spectra by Zimmermann and Pimentel (1962) and Bertie and Whalley (1967);
the H2O-D2O mixed crystal spectra by Hornig et al. (1958), Haas and Hornig (1960),
and Bertie and Whalley (1964a); and the infra-red and Raman spectra of the high-
pressure ices by Bertie and Whalley (19646), Taylor and Whalley (1964), and Marck-
mann and Whalley (1964).



TABLE 3.15

Salient features of the vibrational spectrum of ice I contrasted, with the spectrum of water vapour
(Cited frequencies are in cm"1 and refer to the infra-red spectrum. Frequencies for D2O are in parentheses.)

Frequency
region (cm"1)

50-1200

1200-4000

Above 4000

Water vapour

Line spectrum arising from molecular
rotation. Most intense near 200 cm"1

at room temperature.

Four vibration-rotation bands arising
from the three fundamental modes
and the first overtone of v2 :
vi = 3657 (2671)
va = 1595 (1178)
K, = 3756 (2788)
2v2 = 3151

Many vibration-rotation bands
arising from overtones and combina-
tions of the three fundamental
modes. See Table 1.3.

Ice I Notation for
band

Intense bandj at ~ 60 (~ 60) arising from rT2
hindered translations.
Intense, broad band at 229 (222) arising vy
from hindered translations. Some structure
evident.
Intense, broad band§ at 840 (640) arising from v^
librations. Structure evident.

Broad, weak band at 1650 (1210) probably va
associated with v2.
Broad, weak band at 2270 (1650). Possibly VA
associated with overtones of i% an(i "T or com-
binations of them with i>2. Called ' association
band'.
Very intense, broad band around 3220 (2420) va
arising from O— H stretching modes. Some
structure evident.

Many relatively weak bands arising from over-
tones and combinations of the three funda-
mental modes with each other and with the
lattice modes. Few, if any, assigned with
certainty.

Detected byf

Raman, neutron,
heat capacity
Infra-red, Raman,
neutron, heat
capacity
Infra-red, Raman,
neutron, heat
capacity

Infra-red, Raman

Infra-red, Raman

Infra-red, Raman

Infra-red, Raman

t Details of the infra-red and Raman spectra are given in Table 3.16. The cold neutron spectroscopy is the work of Larsson and Dahlborg (1962)
and the heat capacity curve analysis the work of Leadbetter (1965).

J This band does not appear in the direct infra-red spectrum but is evident in a plot of (optical density)/!-2 (see Bertie and Whalley 1967).
§ In the cold neutron spectrum (Larsson and Dahlborg 1962) the counterpart of this band has its maximum at a lower frequency. This is also

found in the analysis of the heat capacity (Leadbetter 1965).
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Vibrations of molecular crystals
The spectra of ice and water vapour differ because for the same

displacements, H20 molecules in the two phases experience different
changes in potential energy. These differences can be expressed mathe-
matically as follows. First we denote the potential energy function
describing the vibrations of an isolated water molecule by U° (Section
1.1 (d)). Now the potential energy of an ice crystal, U, is not merely the
sum of many such functions, but may be written within the harmonic
approximation in the form (Hornig 1950, Vedder and Hornig 1961):

Here U'j is the potential function of the jth molecule in the absence of
its neighbours. All other terms describe the perturbations of neigh-
bouring molecules that account for the spectroscopic differences of
crystal and vapour.

The term U'j describes the change in [7? owing to the neighbouring
molecules fixed in their equilibrium positions, and depends on the
equilibrium positions and orientations of the neighbours. It accounts
for the shifts in spectral frequencies that are due to the electrostatic
forces, hydrogen bonds, and other forces that would act on the jih
molecule if the atoms in all of the other molecules in the crystal were
motionless. For this reason, the physical effect produced by U'j is called
the static field effect. In ice, hydrogen bonds to neighbouring molecules
account for most of the static field effect. A point of importance is that
the perturbation U'j is not necessarily the same for each molecule in the
crystal. Since it depends on the environment of the jth molecule, the
existence of different molecular environments in the crystal can produce
different shifts of the vapour-molecule frequencies. Because of this,
the crystal spectrum may contain information about the variety of
molecular environments in the crystal.

The term U^ is the potential function for intermolecular or lattice
modes of vibration; it is a function of the positions and orientations of
neighbouring molecules. In a lattice mode, the vibrating species is to
a first approximation a rigid molecule. The molecule may execute a
hindered translation, a hindered rotation (usually called a libration), or
some combination of the two. A spectral band caused by a hindered
translational motion can be distinguished experimentally from one
caused by a librational motion by the effect of isotopic substitution on
the band frequencies. In the case of ice, the ratio of frequencies of a
hindered translational band in the spectra of H2O and D20 ices is
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^(20/18) = 1-05, whereas the same ratio for a librational band is about
V2.f In both H20 and D20 ices, the frequencies of the lattice modes are
considerably lower than the frequencies of modes associated with internal
motions of water molecules. The reason is that an atom vibrating within
a molecule has both a smaller mass, and a larger restoring force acting
on it, than an entire molecule vibrating within the lattice. Both factors
contribute to the relatively low frequencies of the lattice modes.

The Uik term of eqn (3.15) describes the coupling of intramolecular
modes of the jth molecule with those of the Jcth molecule. Whereas U®
depends only on the displacement of atoms in the jth molecule from
their equilibrium positions, Uik depends on displacements of atoms in
both the jth and fcth molecules. When an intramolecular mode of one
molecule is coupled with the same intramolecular mode of N neighbouring
molecules, the spectral band associated with the mode is split into JV+1
components, thus complicating the interpretation of the spectrum.
Fortunately this complication can often be circumvented by studying
small amounts of the given compound dissolved in a crystal of isotopic
molecules. For example, we shall presently summarize data indicating
that the 0-H stretching vibrations in ice are coupled to the 0-H
stretching vibrations of neighbouring molecules; but in a D20 crystal
containing small amounts of HDO, the 0-H stretching vibrations are
not strongly coupled to other vibrations. Hence the effect of coupling,
that is, the effect of the U,/k term on the frequency of the intramolecular
vibrations, can be largely eliminated by using a dilute solution in an
isotopic crystal.

The physical basis for coupling and uncoupling is as follows: the
oscillations of weakly connected vibrators having nearly the same
characteristic frequency are said to be coupled. Neighbouring molecules
in a crystal, and two pendulums suspended from a taut string, are
examples of such a coupled system (Fig. 3.19), since displacements in
one vibrator produce forces in the other vibrator. If the frequencies of
the uncoupled vibrators are nearly the same, then the introduction of
a physical connection between them will produce a much larger shift in
the frequencies of the system than if the frequencies of the uncoupled
vibrators are quite different. The frequency changes produced by
connecting two pendulums of very different length are therefore small,

f The frequency of a vibration is inversely proportional to the square root of the mass
of the vibrating species. Since it is the hydrogens that move during a libration, the
frequency ratio of the libration bands in H2O and D2O ices should be 1/VJ = V2. In
contrast, entire water molecules move during a hindered translation, so that the fre-
quency ratios of hindered translational modes in H2O and D2O ices should be ^/(20/lS).
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and we can say that two pendulums can be uncoupled by making one of
the pendulums much longer than the other. Similarly the 0-H bond in
a particular water molecule is said to be strongly coupled with the other
O-H bonds in a crystal of ordinary H2O ice, but if all of the other protons

FIG. 3.19. Coupled and uncoupled vibrating systems.

in the crystal except that in the particular 0-H bond are replaced by
deuterons (producing an HDO molecule in a DaO lattice), then this 0-H
bond is said to have been uncoupled from the lattice. By the same prin-
ciple, the 0-H and 0-D stretching motions of an HDO molecule are
not intramolecularly coupled. That is, the two stretching modes of HDO
are nearly pure 0-H and 0-D bond elongations.

The last term in eqn (3.15), U^j, describes the coupling of lattice motion
with intramolecular displacements. In ice, where the frequencies of
lattice and intramolecular modes are widely separated, this form of
coupling is probably not important. We shall not consider this term
further.

The 0-H stretching band, vs

We are now prepared to interpret the observed spectrum of ice in
terms of atomic motions. Let us begin with the broad band around
3220 cm-1. This is the only strong absorption band of ice anywhere near
the frequencies of the vx and vz 0-H stretching modes of water vapour
(at 3657 and 3756 cm-1 respectively; see Table 3.15). This band is
therefore undoubtedly associated with 0-H stretching motions. It is
not immediately clear, however, why this band is centred at a frequency
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roughly 10 per cent lower than the vapour stretching modes; nor is it
immediately clear why one broad band is found in ice in place of the two
sharp ones in the vapour.

On further study it seems certain that the 10 per cent reduction in
O-H stretching frequencies is due largely to the static field effect (the
U'j term in eqn (3.15)) of hydrogen bonds. A survey of spectroscopic
studies of hydrogen bonding (Pimentel and McClellan 1960) shows that
in many systems the stretching frequencies of O-H groups are reduced
by an amount of the order of 10 per cent during hydrogen-bond
formation. Reasoning qualitatively, one can explain the decreased
frequencies by the attraction of 0B for HA in the 0A-HA OB hydrogen
bond. This facilitates OA-HA stretching and therefore diminishes the
stretching frequencies. A quantitative description of this effect, based
on the Hellmann-Feynman theorem, was developed by Bader (1964 b).

We must now account for the presence of one very broad O-H stretch-
ing band in ice instead of the two sharp bands of the vapour. Spectro-
scopic studies of dilute solutions of HDO in H20 and D20 ices (Hornig
et al. 1958, Bertie and Whalley 1964 a, b) indicate that the observed band
in ice is actually an unresolved superposition of a number of bands. This
multiplicity of bands is apparently caused by two effects:!

(1) The vl and va intramolecular stretching modes of one molecule
couple with the corresponding modes of neighbouring molecules,
because of the Uik term of eqn (3.15). The well-defined stretching
frequencies of the isolated molecule are in this way replaced by
broad bands of coupled frequencies.

(2) The perturbation U'j varies slightly from molecule to molecule, and
hence the stretching frequencies are different for different mole-
cules. In other words, since molecules in the ice crystal do not
have identical environments they experience different static field
effects.

Evidence for the first effect is shown in Fig. 3.20. From the lower panel
it can be seen that the O-H stretching band (at 3277 cm"1) of a dilute
solution of HDO in D20 ice is very narrow compared to the band in pure
H20. Now the O—H stretch of HDO is largely uncoupled from vibrations
of neighbouring molecules. Hence the relative narrowness of the O-H
stretching band of HDO in D20, compared to the stretching band in
pure H20 ice, suggests that the breadth of the latter band results partly
from coupling of vibrations (Hornig et al. 1958, Bertie and Whalley

f A third effect, Fermi resonance, will be considered below.
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1964 a). Similarly, the relatively narrow O-D stretching band of HDO
inH20 (at 2421 cm-1 in curve (b) of the upper panel of Fig. 3.20) compared
to the stretching band in pure D20 ice, suggests that the latter owes its
breadth in part to coupling of vibrations.

FIG. 3.20. Infra-red spectra of ice I at /~> 110°K reported by Bertie and Whalley
(1964 a). Solid lines indicate absorption due to ice, the dotted lines indicate absorption
due to a mulling agent (isopentane) used to coalesce the powdered ice, and the dashed
lines indicate regions where the absorption of ice is uncertain owing to the mulling agent.
Some of these spectra were actually obtained from ice Ic but spectra of ice I under the

same conditions were found to be identical (see following section).
Upper panel:

curve (a): 100% H2O.
curve (b): 95% H2O, 5% D2Of; a thicker sample than curve (a).

Lower panel:
curve (o): 5% H2O, 95% D2O.f
curve (6): 0-2% H2O, 99-8% D2O.f

Adapted with changes from Bertie and Whalley (1964a).

f Initial composition. Proton jumps soon produce a mixture of HDO and the more abundant
isotope of water initially present. Only small amounts of the less abundant isotope are in the
equilibrium mixture.

We must still account for the breadths of the uncoupled stretching
bands of HDO, which are wider than the narrow stretching bands of
water vapour. Variations in the static field perturbation U'j for different
molecules (the second effect mentioned above) probably account for



ICE 129

most of the residual width of the uncoupled bands. The evidence for this
comes from the difference of the 0-D stretching bands of HDO in dilute
solutions in ices I and II (Bertie and Whalley 1964 a, b).

When HDO is dissolved in H20 ice I, it is found that the 0-D stretch-
ing band consists of a single line with a half-width of 30 cm"1. The
corresponding band in ice II, however, is split into four fine peaks, each
with a half-width of about 5 cm-1 (Table 3.16). This difference is not
due to coupling, since coupling has been largely eliminated in these
dilute isotopic solutions. In fact the difference probably arises from
variations in the U'j terms as follows: ice II has an ordered arrangement
of hydrogens that gives rise to four equilibrium oxygen-oxygen separa-
tions (Section 3.2 (a)). Each of these four presents a distinct static
field perturbation, Up to the vibrating 0-D group, and this results in
four narrow stretching bands. Ice I, in contrast, is characterized by
a disordered arrangement of hydrogens that must result in a distribution
of equilibrium oxygen-oxygen distances. These in turn give rise to a
distribution of U'j terms, which account for a single relatively broad
0-D stretching band.

Several facts mentioned above should be emphasized because they will
be useful to us later in interpreting the spectrum of liquid water (Section
4.7). They are:

(1) The half-width of the absorption band associated with a single 0—D
stretching vibration is no more than 5 cm-1. The half-width of the
absorption band associated with a single 0-H stretching vibration
is no more than 18 cm-1 and is probably less (Bertie and Whalley
19646).

(2) When different molecular environments are present in the sample,
the variation in U'j terms results in several stretching bands. These
bands may be superimposed to form one broader band as in ice I
or they may be distinct as in ice II, depending on the distribution
of molecular environments.

(3) When the stretching vibrations of neighbouring molecules are
coupled, the observed band is very broad.

One other effect may impede interpretation of the stretching band of ice. The
first overtone of the H-O-H bending vibration (see below) falls at about the same
frequency as the O-H stretching band. The absorption intensity of this overtone
by itself would be negligible compared to the intensity of the O-H stretching mode.
But because these bands overlap, the bending overtone may 'borrow' intensity
from the stretching band, and consequently may contribute substantially to the
breadth of the observed band near 3200 cm"1. This borrowing of intensity by one
band from an overlapping band is called Fermi resonance. The frequencies of both

855339 K



130 ICE

modes involved in Fermi resonance are shifted from their frequencies in the
absence of resonance. Fermi resonance does not, however, cloud the interpretation
of the stretching bands of dilute solutions of HDO, because the overtone of the
bending mode does not overlap these modes.

The detailed shape of the stretching band in ice is still not thoroughly under-
stood. Several interpretations have been given. Haas and Hornig (1960) assigned
the main maximum of the band to the v3 modes of water molecules (which are
presumably coupled). They believe that two subsidiary bands are located at
3125 and 3360 cm"1 and that both contain nearly equal admixtures of v± and 2i>2

in Fermi resonance. According to Bertie and Whalley (1964 a), coupled v3 vibra-
tions contribute strongly to the main maximum, but the observed band is a
superposition of more than three component bands. The component bands arise
through complex coupling of all normal modes.

The, H-O-H bending band, v2, and the association band, VA

The H—O-H bending mode of the vapour, i>2, is at 1595 cm"1. A broad,
weak band with a maximum near 1650 cm-1 appears in the ice spectrum.
Since the formation of hydrogen bonds is found to increase bending
frequencies slightly (Pimentel and McClellan 1960), this band is probably
associated with H-0—H bending vibrations. The temperature depen-
dence of the frequency of the band maximum corroborates this assign-
ment. Zimmermann and Pimentel (1962) found that the frequency of
the maximum decreases with temperature (~ 0-3 cm-1 "C"1), whereas
the frequencies of lattice vibrations simultaneously increase. This seems
to rule out the suggestion that the 1650 cm-1 band is primarily associated
with overtones of the lattice modes. The effect of coupling on the 1650
cm-1 band is uncertain. Zimmermann and Pimentel (1962) did not find
evidence for coupling from the spectra of dilute isotopic crystals, and
they concluded that H-0—H bending vibrations of molecules are not
coupled in ice. This conclusion has not been universally accepted
(Bertie and Whalley 1964 a).

The VA band at 2270 cm.-1 has no counterpart in the spectrum of water
vapour. The temperature dependence of the band maximum is similar to
the temperature dependence of the bands associated with lattice modes,
and thus it is probably an overtone or combination of lattice modes
(Zimmermann and Pimentel 1962). Bertie and Whalley (1964 a) assigned
it to both 3vL and v2+vL.

Lattice modes
The three prominent bands in the 50-1200 cm-1 region arise from

intermolecular modes of vibration. The ratio of frequencies in H20 and
D20 ice shows whether a band is associated with hindered translations
or librations. From Table 3.15 we see that the H20/D20 frequency
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ratio of the band near 800 cm"1 is 840/640 = 1-3, so this band may be
assigned to librational motions (e.g. Ockman 1958). The H20/D20
frequency ratio of the band near 229 cm-1 is 229/222 = 1-03 and so may
be ascribed to hindered translational motions. The band near 60 cm-1 in
the neutron scattering and Raman spectra also appears to arise from a
hindered translation (Ockman 1958, Larsson and Dahlborg 1962).

Bertie and Whalley (1967) investigated in detail the region of the
infra-red spectrum from 50 to 360 cm"1, which is associated with hindered
translations. In addition to the main maximum at 229 cm."1, they found
a less intense maximum at 164 cm."1 and a shoulder near 190 cm.-1. They
assigned the peaks at 229 and 164 cm.-1 to maxima in the density of
vibrational states owing to transverse optic and longitudinal acoustic
vibrations respectively, and they assigned the shoulder at 190 cm-1 to
the maximum in the longitudinal optic vibrations. They believe that
the peak which appears near 65 cm"1 in the spectrum of optical density/r2

is due to the maximum in the transverse acoustic vibrations.
Bertie and Whalley (1967) found that the main maximum of the band

near 229 cm"1 shifts to lower frequencies and decreases in intensity as ice
is heated from 100 to 168° K. They attributed these changes to hot bands,
that is to transitions from excited vibrational levels to even higher levels.

Several investigators have analysed the normal modes of vibration of
small groups of water molecules arranged as in ice, and have assigned
bands in the lattice region of the observed spectrum to various of these
normal modes. This procedure gives a qualitative idea of the molecular
motions that are associated with particular bands in the spectrum, and
can lead to approximate potential energy functions for the system (Sec-
tion 3.6(6)). In one such study, Zimmermann and Pimentel (1962)
considered a five-atom system, consisting of a central water molecule
and the two neighbouring oxygen atoms that are hydrogen-bonded to
its hydrogen atoms. Kyogoku (1960), in a more elaborate study, analysed
the nine-atom system comprised by a central oxygen atom, the four
surrounding hydrogen atoms, and the four neighbouring oxygen atoms.
Walrafen (1964) considered the normal modes of a five-molecule system
(see Section 4.7 (c)). In these three studies, the VL band of the spectrum
was assigned to hindered rotational motions and the VT band was assigned
to hindered translational motions.

Summary
Let us summarize this section by imagining the infra-red spectrum of

a hypothetical ice crystal whose potential energy we can alter at will.
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Initially, the potential energy function of every molecule is equal to U°,
and the motion of molecular centres of mass is forbidden. The only
infra-red absorption of the crystal would then be caused by the v1; v2,
and va vibrational modes (plus their overtones and combinations) of
individual molecules, and would appear as sharp lines at the vapour
frequencies. Now we introduce the static field effect described by Up
but not the coupling of intramolecular modes described by Ujk. This
means that we allow the equilibrium electric fields of neighbouring
molecules to act on each other, thus forming hydrogen bonds, but we
do not allow the internal vibrations of one molecule to influence its
neighbours' vibrations. For the moment we assume that our ice crystal
is perfectly ordered, with only a single oxygen-oxygen separation and
hence a single function U], The inclusion of U'j shifts the frequency of
each line: the v1 and v3 modes, originally at 3657 and 3756 cm-1, shift to
about 3200 cm-1. The v2 bending mode shifts from 1595 cm-1 to about
1650 cm-1. If we now suppose that the hydrogen arrangement of
the crystal is disordered, the absorptions take on finite widths owing to
the variation of U'j from molecule to molecule. Even so, the half-widths
of the 0-H stretching bands are still no greater than 50 cm-1.

Up to this point we have held the molecular centres of mass motion-
less. Now we ease this restriction by adding the lattice potential U^:
the molecules execute hindered translations and librations, and absorp-
tion bands appear near 60, 229, 840 and 2270 cm"1. Finally we intro-
duce the Ujk perturbation, thus interacting the v1; v2, and v3 modes
of each molecule with those of its neighbours. This step radically alters
the spectrum in the region of 3200 cm-1. The v1 and v3 modes are split
into many vibrations; these may interact with the first overtone of the
va mode, and all the resulting bands are superimposed, producing a band
like the one that is actually observed.

(6) Vibrational spectra of ice polymorphs
Portions of the infra-red and Raman spectra of ice Ic and of the

quenched high-pressure ices have been recorded in recent years. These
studies are summarized in Table 3.16. The most striking feature of these
spectra is their similarity to one another and to the spectrum of ice I.
These similarities include:

(1) Strong bands in the infra-red spectra of ices I, Ic, II, III, and V
near 3200 cm-1 (2400 cmr1 for D20) undoubtedly arising from 0-H
stretching vibrations. None of the polymorphs shows sharp absorption
bands near the frequencies of H20 vapour; hence it may be concluded
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that all molecules are fully hydrogen-bonded. The infra-red spectra of
ices VI and VII have not been recorded in this region, although their
Raman spectra have. Molecules in both these polymorphs seem to be
fully hydrogen-bonded, though the shift of absorption of ice VII towards
the vapour frequencies indicates that hydrogen bonding in this poly-
morph may be weaker than in the others (Marckmann and Whalley
1964). These conclusions are in accord with available crystallographic
evidence (Section 3.2): water molecules in all polymorphs are found to
be fully hydrogen-bonded, but the hydrogen-bond length in ice VII at
atmospheric pressure (<~2-95 A) is considerably longer than hydrogen-
bond lengths in the other polymorphs.

(2) Strong, broad bands around 800 cm-1 (600 cm"1 for D2O) in the
infra-red spectra of ices Ic, II, III, and V. These may be assigned, as
in ice I, to molecular librations. In addition, the Raman spectra of ices
Ic, II, III, and V show a broad band around 200 cm-1, similar to the one
in ice I that arises from hindered translations of molecules. The similarity
of the bands in ices II, III, and V to the corresponding bands in ice I
indicates that forces between neighbouring water molecules in these
polymorphs are nearly the same as the forces in ice I. In other words,
hydrogen bonding in these polymorphs is not qualitatively different
from that in ice I.

(3) Bands with maxima in the 1650-1700 cm-1 range (1200-1250 cm-1

for D20) of the infra-red spectra of ices Ic, II, III, and V. These bands
are probably associated with the v2 modes of water molecules. In ices II,
III, and V this band is more intense, relative to the stretching band, than
is the corresponding band in ice I. Bertie and Whalley (1964 b) suggested
that these stronger intensities may be due to the more pronounced
bending of hydrogen bonds in these ices.

(4) Virtually identical infra-red spectra of ice I and ice Ic (Hornig et al.
1958, Bertie and Whalley 1964 a). The strong resemblance of their
structures (Section 3.2 (c)) makes this identity understandable.

There are a number of small differences in the spectra of the ice
polymorphs. Perhaps the most interesting are in the stretching bands
of HDO in a dilute solution in D20 and H20 crystals. Briefly, HDO
molecules may be used as 'probes' to test for variation of molecular
environments in an H20 or D20 crystal. Their 0-D (or 0-H) stretching
modes are only weakly coupled through the Uik term of eqn (3.15) to
the stretching modes of the H2O (or D20) molecules around them. As a
result, any variations in the 0-D (or 0-H) stretching frequencies of
different HDO molecules are determined largely by variations in the
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static perturbations, Up which they experience. Hence the observed
shapes of 0-D (or O-H) stretching bands of HDO in dilute solution in
HaO (or D20) crystals contain information about environments of the
HDO molecules.

It has already been mentioned that the 0—D stretching band of a
dilute solution of HDO in H20 ice II has four distinct narrow peaks. The
same band for ice III has two peaks, whereas the corresponding bands
for ices I and V are relatively broad and have no fine structure at all
(Table 3.16; Bertie and Whalley 1964 a, 6). We have also mentioned
that, as a consequence of this observation, it seems likely that each
0-D group in ice II experiences one of four different static perturbations
U'j, and that Bertie and Whalley (19646) attributed the different Z7J-
values to the presence of four equilibrium oxygen-oxygen separations
in ice II. To explain distinct oxygen-oxygen separations, Bertie and
Whalley predicted that the hydrogen atoms in ice II have fixed, ordered
positions. This prediction has been borne out by crystallographic,
thermodynamic, and dielectric data (Sections 3.2, 3.3 (a), and 3.4 (a)).
By similar reasoning, the two peaks of the corresponding band in ice III
may be explained by the presence of at least two oxygen-oxygen separa-
tions in the crystal lattice of quenched ice III. The corresponding bands
for ices I and V have a breadth comparable to the total spread of peaks
in ices II and III, but no fine structure, indicating the existence of many
slightly different static perturbations U'j. The slight variations of U'j in
ices I and V probably arise from a distribution of oxygen-oxygen
separations. The half-widths of the bands are consistent with a distribu-
tion of O----0 distances of several hundredths of an angstrom (Bertie
and Whalley 1964 a, b). Such a distribution of separations could result
from the disordered arrangement of hydrogen atoms known to occur
in both these polymorphs. Infra-red spectra of dilute isotopic crystals of
ices VI and VII have not been reported.

A second difference in the spectra of the ice polymorphs is the degree
of fine structure in the band around 800 cm"1, associated with the
molecular librations, VL. The VL band in both ices II and III is rich in
detail, but in ice V, and especially ice I, practically no fine structure can
be found. Bertie and Whalley (19646) attributed the fine structure of
this band in ices II and III to strict selection rules which are the conse-
quence of ordered hydrogen arrangements in these polymorphs.

Small differences in band frequencies of the ices suggest that hydrogen
bonds in the high-pressure polymorphs are more easily bent and stretched,
and are probably slightly weaker, than those of ice I. For example, the
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infra-red frequencies of 0-H stretching vibrations of HDO in ice poly-
morphs increase in the order (see Table 3.16 for greater detail):

Polymorph: I III V II
v (0-H stretch) in cm-1: 3277 3318 3350 ~ 3350

Raman frequencies for 0-H stretching in pure H20 ices show a similar
trend:

Polymorph: I III V II VI VII
v (0-H stretch) in cm-1: 3085 3159 3181 3194 3204 3350

It has been found that relatively high stretching frequencies of 0-H
groups in hydrogen bonds are indicative of relatively weak hydrogen
bonds (Pimentel and McClellan 1960). Thus the higher stretching
frequencies of the polymorphs to the right of these series indicate that
hydrogen bonds in these polymorphs are weaker than hydrogen bonds
in the polymorphs to the left.

The relative resistance to bending and stretching of hydrogen bonds
in the polymorphs may be estimated from the sequence of frequencies
of the intermolecular modes. Infra-red frequencies of the VL bands of
HDO in ice polymorphs decrease in the order:

Polymorph: I III V II
VL (HDO in D20) in cm-1: ~ 822 ~ 786 ~ 780 ~ 770

Raman frequencies of the VT mode in D20 polymorphs decrease in the
order:

Polymorph: I III V II
VT in cm-1: 217 166 159 146

Since lower frequencies for the VL and VT modes imply that hydrogen
bonds are more easily bent and stretched, the hydrogen bonds of the
high-pressure polymorphs must be more easily distorted from their
equilibrium angles and lengths than are the hydrogen bonds of ice I.

(c) Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a useful tool for studying the

location of protons in ice crystals. This method depends on the fact that
the degree of broadening of the proton resonance band is inversely
proportional to the cube of the equilibrium proton-proton separation of
the two protons of an ice molecule. Of course, the proton-proton separa-
tion is not sufficient to determine the dimensions of an H20 molecule in
the crystal. Once the equilibrium bond length is known, however, the
equilibrium H-O-H angle can be determined, or vice versa. Fig. 3.21
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shows the combinations of H-O-H angles and O-H bond lengths that
are consistent with Kume's (1960) KMR study of ice. The width of the
strip is an indication of experimental uncertainty in the proton-proton
separation. An ice molecule with bond length of 1-01 A and H-O-H

FIG. 3.21.f Equilibrium dimensions of the water molecule in ice I. The
shaded strip shows values consistent with the NMR spectrum of ice I
reported by Kume (1960). The values (a) and (6) are those proposed by
Peterson and Levy (1957) and Chidambaram (1961) respectively from

neutron diffraction of D2O ice I.

f Adapted with changes from Kume (1960).

angle of 109-5°, originally proposed on the basis of neutron diffraction
data (Peterson and Levy 1957), is not consistent with the NMR results.
On the other hand, a molecule with a bond length of 1-0 A and a bond
angle near to that of an isolated molecule is consistent with both neutron
diffraction (Chidambaram 1961) and NMR data.

NMR studies also provide some information about the redistribution
of charge during hydrogen-bond formation. Components of the electro-
static field gradients at the deuterons in D20 ice can be evaluated from
splittings of the NMR spectrum that arise from the interaction of the
quadrupole moments of the deuterons with the field gradients of the ice
crystal. The field-gradient components are found to be about 30 per cent
less in ice I (Waldstein et al. 1964) than in the free molecule (Table 1.5).
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Let us consider why this should be the case for the largest component
of the field gradient, the one which lies nearly along the 0—D axis. If
we denote this axis by z', and the electrostatic potential at the deuteron
by i^, then this component of the field gradient at the deuteron is
d^/Sz'2. Experiments show that 82i^/8z'2 is positive at the deuteron
in ice (Waldstein et al. 1964), as in the isolated water molecule (Posener
1960), indicating that the contribution to this quantity from the positive
oxygen nucleus OA outweighs the negative contribution from the
electrons in the 0A-D bond. Now the observed decrease of some 30 per
cent in 8*i^/dz'2 during the formation of the 0A-D-- 0B hydrogen bond
could be due to (1) the longer 0A-D distance in ice, and hence smaller
positive field gradient at the deuteron arising from the 0A nucleus, or
to (2) the electric field gradient produced by 0B at the deuteron, or to
both effects. Quantum-mechanical calculations (Weissmann 1966)
indicate that if the 0-D bond length were maintained at its vapour-state
value of about 0-96 A in the hydrogen bond, the approach of 0B would
decrease 82^/8z'2 by only 10 per cent. Apparently it is effect (1), the
increase in the 0A-D bond length during hydrogen-bond formation,
which is the major factor in lowering the field gradient at the deuteron.
The calculations by Weissmann (1966) of S^jdz'2 in both the isolated
molecule and in ice I agree remarkably well with experiment, although
the SCF-m.o. wave functions employed by her were approximate and
the three-centre integrals arising in the calculation were evaluated
approximately.

3.6. Hydrogen bonding
(a) Experimental energy of hydrogen bonding

An experimental value for the energy of the hydrogen bond in ice is
often useful for comparison with calculations, or for the interpretation
of experiments. Examination of the literature on this subject shows
that a wide range of values has been reported. Each of these values
corresponds to one possible definition of 'hydrogen-bond energy', and
which definition is the appropriate one depends on the experiment or
calculation being considered. Let us discuss several definitions and the
values of the hydrogen-bond energy, ^H-bond> to which they lead.

The experimental lattice energy of ice is the energy that would corre-
spond to the result of a rigorous quantum-mechanical calculation of the
intermolecular energy. It may be defined as the difference in energy
between a mole of isolated water molecules at 0 °K with atoms motion-
less, and a mole of ice at 0 °K with atoms motionless. The term 'atoms
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motionless' means that the zero-point energy of isolated water molecules
is zero (Zintra.vap = 0), and that both the intramolecular and inter-
molecular zero-point energies of the water molecules in ice are zero
(^intra-ice = ^inter = °)- The intramolecular zero-point energy is the

Fia. 3.22. Schematic diagram showing the relationship of the total lattice
energy of ice to the enthalpy of sublimation and zero-point energies. The
horizontal lines define states of H2O; the vertical arrows give the energies of

transition between the states. All energies are given in kcal mol"1.

zero-point energy associated with internal modes of vibration; its value
for an isolated molecule differs from its value for a molecule in ice because
the frequencies of the internal modes differ. The intermolecular zero-
point energy is associated with the intermolecular modes of vibration
in ice. Prom Fig. 3.22 it is clear that the lattice energy L so defined is
given by

where AHanb is the enthalpy of sublimation of ice at 0 °K.
We can evaluate L from the experimental enthalpy of sublimation of

ice at 0 °K (11-3 kcal mol-1; see Table 3.7) and from values of the zero-
point energies determined from spectroscopic data. According to Whalley



ICE 139

(1957, 1958), Z intor=3-5 kcal mol"1 and Zintra.lce —Zintra.vap = —1-4
kcal mol"1. Hence the total lattice energy of ice at 0 °K is

11-3+3-5—1-4 = 13-4 kcal mol"1.

Definition I. The first definition of the hydrogen-bond energy will be
formulated in terms of the lattice energy: -E'jj.bona equals the lattice
energy of a mole of ice divided by the number of hydrogen bonds in a
mole. Since each mole of water molecules contains two moles of hydrogen
atoms, and since each hydrogen atom participates in one hydrogen
bond (excluding the small fraction on the surface of the crystal),

A rigorous quantum-mechanical calculation of the hydrogen-bond energy
in ice would presumably yield this value.

Definition 2. A similar definition of -E^-bona can be formulated in
terms of the enthalpy of sublimation, A.ffgul:):

Since A£Tsub is a function of temperature, ^H-bona as defined here depends
on the temperature. This definition gives a slightly larger value for the
energy of the deuterium bond in D20 at 0 °K, 5-96 kcal/mol-of-deuterium-
bond.

The hydrogen-bond energy defined by eqn (3.17) is clearly more
appropriate than that defined by eqn (3.16 a) for considering such
properties as the vapour pressure of ice.

Definition 3. If we adopt either of the above definitions, we ascribe
the entire intermolecular energy to hydrogen bonding. In so doing we
include in ^H-bona the effects of dispersion and repulsive forces, which are
present not only in ice but also in crystals of non-hydrogen-bonded
substances. A definition may be based on the premise that the contribu-
tions to A-H"gub from hydrogen bonds and from other forces are distinct:

where -Either represents the intermolecular energy associated with the
other forces.

This definition suffers from the ambiguity involved in estimating



140 ICE

-Bother- This term is not an observable quantity nor is it subject at present
to accurate calculation. Each method of evaluating Eother (see below)
constitutes an operational definition of Es_bm^; thus Definition 3 actually
encompasses a class of many different definitions.

Pauling (1960) and Taft and Sisler (1947) assumed that ^other is the
enthalpy of sublimation that ice would have if it were not hydrogen-
bonded, and they estimated its value from the thermodynamic properties
of related compounds. Pauling concluded that ^/H-bond is about 5
kcal/mol-of-hydrogen-bond, and Taft and Sisler concluded that it is
4-25 kcal/mol-of-hydrogen-bond. Searcy (1949) modified these estimates
by taking into account the increased density that a hypothetical non-
hydrogen-bonded ice would have over real ice, and he concluded that
-^H-bond ig 6-4 kcal/mol-of-hydrogen-bond. Searcy's value of -2/H-tond ig

larger that A£Tgub/2 because he believes that the repulsive energy between
molecules in the non-hydrogen-bonded ice outweighs the attractive
dispersion energy, and thus that -Eother is negative. Harris and O'Konski
(1957) adopted an even larger value for the repulsive energy and con-
cluded that -En-bond ig about 7-7 kcal/mol-of-hydrogen-bond.

Apparently different methods of estimating -Bother lead to quite
different values of $H-bond- Which, if any, of these values correspond to
the energy changes associated with given physical processes (such as
dielectric relaxation or self-diffusion) is not immediately clear.

Definition 4. A number of interesting and important processes occur
in the ices and in liquid water whose molecular description involves the
concept of breaking hydrogen bonds between neighbouring H20
molecules that remain close together after the bond is broken (for
example, the production of D- and L-defects in ice and the changing
structure of liquid water when the pressure and temperature are changed).
The energies of hydrogen bonds obtained from Definitions 1, 2, and 3
are not appropriate for such situations. For instance, the interaction
of non-adjacent molecules contributes an energy, -Knon.a(y, to the lattice
energy and sublimation energy of ice which is included in the term
•Bother m e(ln (3.18) (calculations described in Section 3.6 (c) suggest
that -Snon.adj is somewhat greater than 0-8 kcal/mol-of-ice). This con-
tribution will be slightly altered when a hydrogen bond between neigh-
bouring molecules is broken. Furthermore, the electrostatic, dispersion,
and repulsion energies between neighbouring HaO molecules in ice or
liquid water will surely be altered when the hydrogen bond between
them is broken, if only because the distance between the molecules is
changed. The energy of a hydrogen bond between two H20 molecules



ICE 141

might therefore be defined as

where A^otlier is the change in electrostatic, dispersion, and repulsion
energies (also including a possible small change in Enon.a^) on breaking
a hydrogen bond between neighbours. Unfortunately the value of
Another is not only unobtainable by any direct measurement, but its
evaluation depends very much on exactly what one means by a 'broken'
hydrogen bond in ice or liquid water. Indeed, its value will probably be
different for different physical processes. Thus the estimation of a
hydrogen-bond energy in terms of this definition is particularly difficult.

In summary, the 'experimental energy of the hydrogen bond in ice'
is not a precisely definable term. The particular value of -E^n-bond that
is chosen should depend on the context in which it is to be used. The
appropriate value for interpreting physical processes such as dielectric
relaxation and self-diffusion will probably not be evident until both the
processes and the potential energy surface for the interaction of water
molecules are better understood.

(6) Potential functions for hydrogen-bonded molecules
Though potential functions were mentioned frequently in Section 3.5,

no explicit expressions were given for the potential energy of ice in terms
of internuclear separations. Such expressions have been developed by
assuming a potential function of reasonable form containing one or more
undetermined force constants ; the constants are then chosen to reproduce
spectral frequencies or other experimental data. It is unlikely that these
functions accurately describe intermolecular forces in ice, but they
provide some insight into spectroscopic results, and they can be used for
rough calculations.

Zimmermann and Pimentel (1962) determined approximate force
constants for hydrogen-bonded water molecules by analysing the
vibrations of the five-atom system 0----H— 0— H----0. The values of the
force constants for 0-H— 0 stretching (&g), 0-H— -0 bending (kg),
and H-O-H bending (&a) were found from the frequencies of the VT, VL,
and v2 bands; these values are listed in Table 3.17. The force constant kg
is roughly half of kg, and both decrease with increasing temperature.
Zimmermann and Pimentel attributed these decreases to weakening
of the hydrogen bonds owing to increases in the 0-H — 0 distance during
thermal expansion of the crystal. Values of % determined by other
workers from spectroscopic frequencies and by Haas (1960) from
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elastic constants (Table 3.17) are in good agreement with Zimmermann
and Pimentel's values. The constant k^ is only about 2 per cent of the
constant kf for O-H stretching (Section 1.1 (d)).

The value of ka found by Zimmermann and Pimentel is over five times
larger than kg, and increases slightly with increasing temperature. Note
that their value of ka at 0 °C is about 25 per cent smaller than ka for an
isolated water molecule (0-76 X 105 dyn cm"1; Section 1.1 (d)). Though
bending the H-O-H valence angle requires less energy in ice than in an
isolated molecule, it requires much more energy than bending the
O-H - - 0 hydrogen-bond angle.

Assuming that we have accurate values for these force constants, we
can express the change in potential energy for moderate stretching of a
hydrogen bond by 

and the change in potential energy for moderate bending by

The quantities AjR and A0 in these equations represent the changes in
0 — 0 distance and O-H—-0 angle from their equilibrium values; f
is the O-H bond length. To the same level of approximation the change
in potential energy for moderate distortion of the H-O-H bond angle

TABLE 3.17

Force constants for vibrations in ice I
(All fcs are in units of 105 dyn cm"1.)

Authors

Haas (1960)

Kyogoku (1960)

Experimental
data

Elastic
constants
Spectroscopic
frequencies

Temp.
(°C)

kji
(O-H--O
stretching)

0-17

0-19

&«
(H-O-H
bending)

KQ

(0-H--O
bending)

f Determined by extrapolation.

Zimmermann and
Pimentel (1962)

J.

Far i.r.
frequencies

0
-20
-50
-95

— 130
-180

(0-155)t
0-158
0-162
0-168
0-173
0-178

(0-56)f
0-545
0-525
0-505
0-495
0-49

(0-085)t
0-088
0-090
0-092
0-094
0-095

Tsuboi (1964)

Bertie and
Whalley (1967)

Hainan
frequency
Far i.r.
frequencies

-173

0-18

0-17-0-19
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from its equilibrium value of 2a is given by

The units of A U in these equations are ergs per molecule if the distances
are in centimetres and the angles are in radians and if the constants
of Table 3.17 are employed.

It should be emphasized that these expressions are almost certainly
inaccurate for all but small deviations of bond lengths and angles from
their equilibrium values because the expressions take no account of the
anharmonicity of the potential energy. An expression that may give
a more accurate description of hydrogen-bond stretching for larger
deviations was developed by Kamb (19656) from the compressibility
and coefficient of thermal expansion of ice I. It has the form

where A U is in kcal mol^1 and A.R is the change in hydrogen-bond length
in A.

Several authors have devised semi-empirical potential functions to
describe the 0-H stretching vibration in an 0-H--0 hydrogen bond.
The chief interest of such functions lies in their ability to correlate
spectroscopic data from different O-H— - 0 systems. Readers interested
in this topic are referred to articles by Lippincott and Schroeder (1955)
and Reid (1959).

(c) Theoretical description of the hydrogen bond in ice
An accurate calculation of the energy and other properties of a hydro-

gen bond in ice from first principles entails difficult problems. A calcula-
tion of the energy, for example, must be very accurate indeed, since the
formation of a hydrogen bond alters the total energy of a water molecule
by only about 1 part in 7000. An accurate description of a single hydro-
gen bond in ice, moreover, should include the effects of at least several
neighbouring molecules, since they influence the electronic distribution
of the hydrogen bond under question.

To date most investigators have bypassed these difficulties by regard-
ing the hydrogen-bond energy as the sum of several component energies,
and then evaluating each component by approximate methods. The

t The coefficient 3-0 of the first term should replace the coefficient 2-2 in the original
article (private communication from Dr. Kamb).
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component energies are generally considered to be of four types (see
Coulson 1957 and 19596 for a detailed discussion of these energies):

(1) Electrostatic. Coulson (19596) denned the electrostatic energy as
that which 'would arise if, in some hypothetical fashion, we could bring
the interacting species together, without any deformation of either
charge cloud, or any electron exchange'. This corresponds to a picture
of a hydrogen bond as a classical electrostatic attraction between one of
the lone-pairs of electrons on one H20 molecule and one of the hydrogen
atoms or 0-H bonds on the neighbouring molecule. The tendency of
many hydrogen bonds to be linear, a configuration that results in the
maximum electrostatic binding energy, suggests that the electrostatic
contribution is large.

(2) Delocalization (or distortion). The increase in binding energy
arising from the deformation of the charge clouds and exchange of
electrons that takes place when the 0A-HA and 0B groups are brought
together is the delocalization energy. The delocalization of electrons
during this process probably consists of both a polarization of 0A-HA

and 0B by each other, and also a migration of electrostatic charge from
the region of OB to the region of 0A and HA.

(3) Repulsive. Repulsive forces arise from the overlap of the charge
clouds of non-covalently bonded atoms. There is undoubtedly consider-
able repulsion between HA and 0B in an 0A-HA— 0B hydrogen bond
in ice. This is because the sum of the van der Waals radii of a hydrogen
and oxygen atom is 2-6 A (Pauling 1960, p. 260), whereas HA and 0B

are separated by only 1-8 A. Moreover, 0A and 0B, separated by
2-76 A in ice I, are also a bit closer than the sum of their van der
Waals radii. Hence interactions of 0B with both HA and 0A give rise
to repulsive forces. The repulsive contribution to the energy tends to
oppose bonding whereas the other three contributions favour bonding.

(4) Dispersion. The energy arising from dispersion forces between
H20 molecules makes a small but significant contribution to the total
hydrogen-bond energy.

Probably the earliest calculation of the hydrogen-bond energy of ice
in terms of constituent energies was by Bernal and Fowler (1933). They
calculated an electrostatic contribution of 7-1 kcal/mol-of-hydrogen-
bond using a point-charge model of an H20 molecule similar to those
described in Section 1.2 (a). They estimated the dispersion-force contri-
bution from a modified London formula, and the repulsive energy from
the condition that the net force on a molecule must vanish. Their total



TABLE 3.18
Results of several calculations of the hydrogen-bond energy in ice I

(All entries are in units of keal/mol-of-hydrogen-bond.)

Authors

Bernal and Fowler (1933)
Verwey (1941)
Bjerrum (1951)

Rowlinson (1951 a)

Pauling (1960) 
Taft and Sisler (1947) 
Searcy (1949) 
Coulson and Danielsson (1954)
Tsubomura (1954)
Weissmann and Cohan (1965)
Coulson and Eisenberg (1966 6)
Campbell et al. (1967)

Experimental value

Model of H2O

Point charge
Point charge
Point charge

Point charge and
multipole expansion

Thermodynamic data

Wave -mechanical

Wave-mechanical
Multipole expansion
Multipole expansion

Electrostatic

7-1°
6-2»
7-2

4.70

10-6e

4-4-5

Distortion or
delocalizatiou

0-2

8-0

9-6
1-0'

Repulsive Dispersion

-3-4 2-0
-4-2 2-7
-3-4c 2-Oc

0-9<*

1-2
1-8

-2-2 1-3

Total

5-7
4-7
5-8

5-8

6-7"

a Includes 2nd neighbours. Neither Bernal and Fowler's nor Verwey's calculation is for the observed disordered proton structure.
6 Includes some distortion.
0 Taken from Bernal and Fowler (1933).
d Includes 1st, 2nd, and 6 3rd neighbours.
e SCF calculation including only 4 electrons and 3 nuclei; some integrals approximated.
' Includes 1st, 2nd, 3rd, and 16 4th neighbours, in the observed disordered proton structure. May not include all delocalization.
' From Definition 1, Section 3.6 (a).

8.2

3.3f
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hydrogen-bond energy is 5-7 kcal mol-1. Table 3.18 shows the results
of this calculation and several others (Verwey (1941), Bjerrum (1951),
and Rowlinson (1951 a)) based on similar models of the water molecule.
The hydrogen-bond energies predicted by these calculations are sur-
prisingly close to the experimental value considering the simplicity of
the models.

The multipole-expansion model for the water molecule (Section 1.2 (a))
has also been used to estimate the electrostatic energy (Coulson and
Eisenberg 1966 6). A conclusion from this calculation was that the electro-
static energy between a water molecule and non-adjacent molecules adds
somewhat to the average electrostatic energy per hydrogen bond. The
12 second neighbours of an H20 molecule in ice I—that is, the 12 neigh-
bours adjacent to the four nearest neighbours—add 0-28 kcal/mol-of-
hydrogen-bond to the electrostatic energy. The 25 third neighbours and
16 nearest fourth neighbours add another 0-14 kcal/mol-of-hydrogen-
bond.

Campbell et al. (1967) carried out an extensive series of calculations of
the electrostatic energy, using various multipole-moment models for the
water molecule. They found values for the electrostatic energy in the
range 4 to 4-5 kcal/mol-of-hydrogen-bond.

Most calculations of the hydrogen-bond energy based on point-charge
models have not included any estimate of distortion or delocalization.
Both experiments and calculations indicate, however, that this contribu-
tion is significant (Coulson 1957 and 19596). For example, both direct
calculations and consideration of the dielectric constant of ice suggest
that the dipole moment of an H20 molecule in ice is at least 40 per cent
greater than that of an isolated water molecule (Section 3.4 (a)). Such
a large enhancement of the dipole moment requires considerable distor-
tion of the charge cloud of a water molecule. The observed change of
electrostatic field gradient at the deuteron of D20 during hydrogen-bond
formation (Section 3.5(c)) is another indication that the electronic
charge in the vicinity of the hydrogen atom is distorted. Several estimates
of the increase in the hydrogen-bond energy of ice owing to delocalization
are shown in Table 3.18; none of these estimates is likely to be very
accurate.

Calculations with the multipole moment model indicate that non-
adjacent neighbours also contribute to the distortion effect (Coulson
and Eisenberg 19666). This means that the presence of non-adjacent
neighbours increases the attraction between a molecule and adjacent
molecules; or, conversely, that removal of the non-adjacent neighbours
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decreases this attraction. In other words, breaking some hydrogen
bonds may weaken others.

Table 3.18 also contains several estimates of the dispersion and repul-
sive contributions to the hydrogen-bond energy. The contribution of
dispersion energy has been estimated by London-type formulas, as in
the calculations of Bernal and Fowler (1933) and Verwey (1941). It has
also been estimated from the thermodynamic properties of non-hydrogen-
bonded molecules similar in other respects to H20, as in the calculations
of Pauling (1960), Taft and Sisler (1947), and Searcy (1949). Both
methods predict about the same magnitude for this energy contribution,
~ 1-5 kcal/mol-of-hydrogen-bond. The repulsive energy is not known
with the same accuracy. As noted by Coulson (19596), the values of
the delocalization and repulsive energies computed from a given model
are intimately related, because the delocalization, which consists of a
migration of electronic charge from one oxygen towards the neighbouring
water molecule, will also give rise to a repulsion between the delocalized
charge and the electrons of the neighbouring molecule.

A step in the direction of ab initio calculations of the hydrogen-bond
energy in ice has been made by Weissmann and Cohan (1965). They
computed the energy of the system 0A-H— OB using the SCF molecular
orbital technique. Although their model includes only four electrons
and can hardly be an accurate description of ice, their calculated hydro-
gen-bond energy is encouragingly close to the experimental value (Table
3.18). Their value of the electrostatic energy, like that calculated from
most of the point-charge models, is larger than the calculated total
hydrogen-bond energy. The three-centre integrals in their calculation
were evaluated by approximate methods.

In summary, a qualitative theoretical description of hydrogen
bonding in ice has been developed in terms of the four component
effects, but a description based on first principles is not yet available.
Of the component energies, only the dispersion energy and perhaps the
electrostatic energy are known with any confidence. Since the electro-
static attraction seems to be greater than the total hydrogen-bond
energy, the combined effect of electron exchange and distortion of charge
clouds during hydrogen-bond formation must oppose bonding. Disper-
sion and delocalization energies, like the electrostatic energy, favour
hydrogen bonding, so that repulsive energy may be large. Thus the
picture of a hydrogen bond that emerges from the approximation of the
component effects is a small net attractive energy that is the sum of
several larger attractive and repulsive energies.
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(d) The properties of ice as determined by hydrogen bonds: a summary
In closing this chapter it may be helpful to consider the properties of

ice in relation to two characteristics of hydrogen bonds: (1) the dissocia-
tion energy of these bonds, which in order of magnitude is intermediate
between energies of typical covalent bonds and of dispersion attractions
of molecules, and (2) the tendency of these bonds to be linear.

The relative magnitudes of hydrogen-bond and dispersion energies
account for the fact that ice has a larger energy of sublimation and a
higher melting-point than compounds like methane, in which cohesive
forces are largely of the dispersive type. On the other hand, ice has a
smaller energy of sublimation and a lower melting-point than covalent
crystals such as diamond. The relative values of hydrogen bonds and
dispersion forces also help to explain the open structure of ice. The
presence of two hydrogen bonds per molecule is energetically more
favourable than the increase in dispersion attractions that might result
if ice had no hydrogen bonds and were more closely packed.

The frequencies of the internal vibrational modes of H20 are altered
much more during condensation than are those of non-hydrogen-bond -
forming molecules. These large shifts, and also the strong coupling of
one molecule's vibrations with those of its neighbours, result from the
relatively strong forces between water molecules. Indeed, if the forces
were much stronger, it would be impossible to regard the vibrational
modes of ice as being simply derived from the vibrational modes of
isolated water molecules.

Near the melting-point thermal agitation becomes vigorous enough
to break a small number of hydrogen bonds, and consequently water
molecules are able to reorient and to move through the lattice with
increasing frequency as the temperature is raised. These motions give
rise to the phenomena of dielectric relaxation and self-diffusion.

Hydrogen bonds in ice tend to be linear. This tendency, coupled with
the tetrahedral character of the water molecule, accounts for the
structures of ices I, Ic, VII, and VIII. In these polymorphs each water
molecule is tetrahedrally coordinated to four molecules, and forms a
nearly linear hydrogen bond with each of them. Thus both the open
framework and low density of ices I and Ic, and the denser interpenetrat-
ing structures of ices VII and VIII, may be regarded as consequences of
linear hydrogen bonds. The tendency of hydrogen bonds to be linear
also contributes to the large dielectric constants of the ices: it is respon-
sible for the strong angular correlation between neighbouring H20
molecules, and accordingly for the magnitude of the dielectric constant.
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The rise in density and drop in dielectric constant that accompany
melting of ice I are both indicative of increased bending and perhaps
breaking of hydrogen bonds in liquid water.

The tendency for linear hydrogen bonding is not so strong that it
cannot be overwhelmed by other forces under certain conditions. For
example, ices II, III, V, and VI all contain distinctly bent hydrogen
bonds. At the pressures under which these polymorphs are stable, the
decrease in free energy arising from the smaller volume permitted by
bent hydrogen bonds outweighs the increase associated with the energy
of bending. Even in ices I and Ic the hydrogen, bonds are probably not
precisely linear. This is not surprising, for if they were linear, the
equilibrium bond angles of individual H20 molecules would have to be
109-5°, several degrees larger than the valence angles of the isolated
molecules. Since bending of O-H—- 0 angles requires much less energy
than bending of H-O-H angles, the former type of bending most likely
predominates.

The resistance of hydrogen bonds to bending is not strong enough to
prevent bending by thermal agitation. The contribution of librational
modes to the heat capacity of ice shows that vibrations cause changes in
hydrogen-bond angles at temperatures above 80 °K. The infra-red
frequencies of librational modes of ice polymorphs indicate that resis-
tance to hydrogen-bond bending is weaker in the high-pressure poly-
morphs than in ice I, and becomes weaker in ice I as the temperature
increases.



4. Properties of Liquid Water

4.1. Introduction
THE purpose of this chapter and the one that follows is to develop
a description of water in molecular terms. We shall be particularly
interested in the relative positions and motions of the molecules, often
called the 'structure' of the liquid, and the forces acting between the
molecules.

Scientists, at least since the time of Roentgen (1892), have put forward
hypotheses about the structure of liquid water, but efforts to verify or
invalidate these hypotheses have been hampered by the lack of a general
theory of the liquid state. In the absence of such a theory, conclusions
about the structure of water have been based on two approaches, neither
of them rigorous. The first approach consists in formulating a model for
liquid water, treating the model in some fashion—usually involving
massive approximations—by the methods of statistical mechanics, and
comparing the calculated values of macroscopic properties with those
that are observed. The fit of the computed properties to experiment is
taken as an index of the correspondence of the model to reality. We shall
discuss this approach in the next chapter. The second approach, which
is adopted in this chapter, is to deduce aspects of the structure of the
liquid from the macroscopic properties of water. The properties of water
have been investigated in such great detail that even though each
macroscopic property can be related only qualitatively or semi-
quantitatively to some feature of the liquid structure, a useful picture
of water emerges when many properties are considered.

(a) Meaning of the term 'structure' as applied to liquid waterf
Before setting out to deduce details of the structure of liquid water

from macroscopic properties we must have a precise idea of what we
mean by 'structure'. A clear understanding of this term is especially
helpful in determining which microscopic details of a liquid are reflected

f The discussion of this section is based in part on the theories of Prenkel (1946) and
Fisher (1964).
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in a given macroscopic property. Let us start with the relatively simple
question of what is meant by the 'structure' of a crystalline solid such
as ice.

The molecules in a crystal oscillate about mean positions and the
array of mean positions constitutes a lattice, having a geometrical long-
range order. If the average frequency of oscillation is denoted by I/TV,
then the characteristic time rv may be considered the average period of
vibration of the molecule about its mean position. In the case of ice, as
discussed in Section 3.5, there are actually many modes of oscillation
of the molecules about their equilibrium positions. For the purposes of
the present discussion, let us regard TV as the average period of the VT

mode. This is the hindered translational mode associated with the
absorption band near 200 cm"1; accordingly the characteristic time TV
is roughly 2 X 10~13 s in ice.

The molecules in a crystal also undergo rotational and translational
displacements, but these are much less frequent than the oscillations.
In ice I, as discussed in Section 3.4, each molecule experiences about
105 reorientations per second at 0 °C, and probably a somewhat greater
number of translational displacements. Let us denote the average time
between two displacements by TD. Then for ice I at 0 °C, TD ̂  10~B s
and thus TD ;> TV.

It follows naturally from this division of thermal motions into rapid
oscillations and slower displacements that the term 'structure' can have
three different meanings when applied to a crystal such as ice. The
meaning depends on whether one considers a time interval short com-
pared to the period for an oscillation (TV), or an interval longer than the
period of an oscillation but less than the time for a displacement (TD), or
an interval considerably longer than the displacement time. This can
be illustrated as follows. Suppose that we take a snapshot of a crystal
using a camera with a lens capable of resolving individual molecules and
a shutter permitting any desired period of exposure. An exposure time
short compared to TV would catch the molecules during the course of a
single oscillation, and for ice I would result in a picture similar to Fig.
4.1 (a). The molecular images would be relatively sharp, and the lattice
would appear slightly disordered because molecules would not neces-
sarily be in their mean positions. Since the equilibrium nearest-neigh-
bour distance in ice is about 2-8 A, and since the root-mean-square
amplitudes of ice molecules are roughly 0-2 A near the melting-point
(Section 3.1 (c)), any given nearest-neighbour distance in the snapshot
might differ by as much as 15 per cent from the equilibrium distance.
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Let us call the structure shown by this snapshot the instantaneous
structure, or I-structure, of the crystal.

Suppose we take a second snapshot with exposure time long compared
to TV but still short compared to TD. This picture would show blurred
molecules centred at the points of a regular lattice, since each molecule

FlO. 4.1. Schematic representations of the I-structure, V-structure, and D-structure
of ice I for a small region of the crystal.

completes many oscillations while the shutter is open. The orientations
of the molecules would not be averaged, however, because the exposure
time is shorter than TD. Let us call the structure revealed by this
snapshot the vibrationally-averaged structure, or V-structure for short.
Fig. 4.1 (b) is a schematic representation of the V-structure of ice I.

A third snapshot, taken with an exposure time long compared to TD,
would show an average of all molecular orientations, since each molecule
experiences many reorientations while the shutter is open. This struc-
ture can be called the diffusionally-averaged, structure, or D-structure.
The D-structure of ice I is depicted schematically in Fig. 4.1 (c); this is
essentially the structure of ice as revealed by neutron diffraction.

Let us now consider the meaning of the word 'structure' as applied to
liquid water. In water, just as in ice, molecular motions may be divided
into rapid oscillations and slower diffusional motions. The evidence
for this is described in detail later in this chapter, but can be sum-
marized as follows.

(1) Spectroscopic studies (Section 4.7) show that molecules in liquid
water oscillate about (temporary) equilibrium positions. The
frequencies of the oscillations are nearly the same as those for
molecules in ice. If we regard the average period of time for an
oscillation, TV, as the average period of the VT mode, we find that
TV for water is slightly smaller than TV for ice (~ 2 X 10~13 s).
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(2) The self-diffusion, viscosity, dielectric relaxation, and NMR
relaxation of water (Section 4.6) all show that the equilibrium
positions and orientations of water molecules experience frequent
changes in the liquid. The dielectric relaxation time of water
indicates that a molecule experiences a displacement on the
average about once every lO^11 s near the melting-point; accord-
ingly TD for the liquid near 0 °C is roughly 10~u s.

Thus the thermal motions in the liquid may be regarded as being of
two types: rapid oscillations about temporary equilibrium positions,
and slower displacements of the equilibrium positions. This division
leads again to the idea of three meanings of the term 'structure'. A
snapshot of the liquid with exposure time less than TV would catch the
molecules in the course of an oscillation and would thus show the I-
structure of the liquid. A second snapshot with exposure time between
TV and TD would be blurred by the oscillations of molecules, but would
not be blurred further by displacements of molecules. This picture would
be of the V-structure. A third picture, with exposure time long compared
to TD , and taken from a camera fixed at a point in space within the liquid,
would be completely blurred. A more informative picture would be
obtained by placing the camera on a given water molecule and recording
the view as the molecule moves through space. This picture would not
be a complete blur because there is some structure in the mutual arrange-
ment of molecules in a liquid even over a long period of time. Let us call
the relative molecular positions revealed by this last picture the D-struc-
ture of the liquid.

Several comments should be made about the distinctions among
I-, V-, and D-structures. As we shall discuss throughout this chapter,
various experimental techniques have provided extensive information
about the D- and V-structures of water. In contrast, no experimental
technique has yet given information about the I-structure of the liquid.
Thus the concept of the I-structure, though useful as a heuristic device,
is not helpful in interpreting experimental data, and we shall not consider
it further.

A second comment has to do with the lifetime of the V-structure. The
value of TD, and hence the average duration of the V-structure, depends
strongly on temperature. At lower temperatures TD is larger, and the
V-structure persists longer. At very low temperatures TD is of the
order of days or weeks and we call the substance a glass. The structure of
vitreous ice (Section 3.2 (c)) is undoubtedly similar to the V-structure of
liquid water. At higher temperatures molecular displacements become
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more rapid, and ultimately approach the frequency of the oscilla-
tions. At this point the distinction between the D- and V-structures
disappears.

Another point of importance is that we may think of the D-structure
as either the time-average or the space-average of different V-structures.
Consider an ice crystal at equilibrium. The D-structure found in one
local region of the crystal is identical to the D-structure in any other
region; but the V-structure in the neighbourhood of a given molecule
is generally different from the V-structure about any other molecule
(see Fig. 4.1). Now we may regard the D-structure in either of two
ways: either as the average over time of the progression of V-structures
that appear around a given molecule owing to displacements of neigh-
bouring molecules, or alternatively, as the average over space of all
V-structures simultaneously present in different regions of the crystal.
The equivalence of these two points of view is the substance of the
ergotic assumption of statistical mechanics.

(b) Liquid structure and experimental techniques
The bulk of this chapter is an attempt to infer from macroscopic

properties details of the structure of water, and the nature of the
forces responsible for the structure. Information on the V-structure of
the liquid can be extracted from the study of some properties but not
from many others, which contain information only on the D-structure.
For example, the thermodynamic properties of water—its volume, heat
capacity, compressibility, and so forth—are characteristic of the
D-structure of the liquid. Taken by themselves, these properties can
give no information on the V-structure. The same is true of the static
dielectric constant, the X-ray diffraction pattern, the angular distribu-
tion of scattered light, the refractive index, and the nuclear magnetic
resonance chemical shift of the liquid.

Techniques that do give information about the V-structure are those
that employ radiation or particles that both interact with the liquid for
only a short period of time and exchange a detectable fraction of their
energy with molecules in the liquid. Infra-red and Raman spectroscopy
as well as inelastic neutron scattering fulfil these requirements. These
techniques are the main source of information on the V-structure of the
liquid. The approximate time intervals that are reflected by these and
other measurements are shown in Fig. 4.2. Neutron scattering provides
information about time intervals as long as 10~u s. This is about the same
period as TD, so that neutron scattering is useful for studying the nature
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of the displacement of the positions of temporary equilibrium. Studies
of the relaxation of dielectric polarization and of nuclear magnetic
resonance are helpful in establishing the average time between displace-
ments.

FIG. 4.2. Time scale of molecular processes in ice and liquid water. The vertical
arrows indicate the periods associated with various molecular processes:
TD and TV are the periods for molecular displacement and oscillation, as
discussed in the text; TS is the period for an 0—H stretching vibration and TE
is the time required for an electron to complete one circuit in the innermost
Bohr orbit.

The horizontal lines below the time scale show the time intervals for which
various experimental techniques have yielded information on ice and water.

The order in which the properties of water are considered below is
based on the time-scale about which they give information. Properties
that refer only to the D-structure of the liquid are considered first. Then
we take up properties that yield information on the molecular displace-
ments and the lifetime of the V-structure. Finally we discuss the
properties that reveal details of the V-structure.

4.2. X-ray diffraction
(a) Radial distribution functions

The diffraction pattern formed by a beam of X-rays that has passed
through a sample of liquid water contains detailed information on the
D-structure of the liquid. To obtain this information, the intensity of
the scattered X-rays is first measured as a function of the angle between
the scattered radiation and the incident beam. A modified Fourier
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integral of the intensity then gives p(R), the average number of water
molecules in an element of volume at a distance E from any molecule.t
Let us call the arbitrary molecule from which R is measured the 'central
molecule'. We may think of p(R) as a description of the local density of
molecules, averaged over a long period of time, at any point distance S
from the central molecule. This is the density of molecules that would
be seen in a time exposure taken by a camera placed on the central
molecule.

The average distribution of molecules in a liquid is usually represented
by either of two functions of p(R), both called radial distribution func-
tions, rather than by p(R) itself. We must define these functions before
discussing their behaviour for water:

(1) g(R): the function g(R) may be defined by

where p0 is the bulk density of the liquid expressed as number of molecules
per unit volume. Thus g(R) may be considered the factor by which the
average local density p(R) at R differs from the bulk density of the
liquid. At large distances from the central molecule g(R) must equal
unity, for at large R the average local density is equivalent to the bulk
density. In the vicinity of the central molecule, however, the local
density differs from the bulk density, because the forces acting between
the central molecule and its neighbours affect their relative positions.
In a plot of g(R) against R (Fig. 4.3), g(R) exceeds unity where the local
density exceeds the bulk density. The oscillations in g(R) near the
central molecule are indicative of short-range order in the liquid; and
the constant value of g(R) equal to unity at large R is indicative of long-
range disorder.

(2) 4TrR2p(R): the quantity 4:TrR*p(R)dR is the average number of
molecules in a spherical shell of thickness dR, at a distance R from the
central molecule. When knRzp(R) is plotted against R, as in Fig. 4.4,
relative maxima appear at the values of R where neighbouring molecules
are most likely to be found. These maxima occur at slightly larger R
values than the maxima in g(R). A plot of 4wR2p(R) is particularly
informative because the area under the curve between any two values
of R is equal to the number of neighbouring molecules within that range
of distance.

t See Morgan and Warren (1938) for the function of scattered intensity that gives
p(R).



FIG. 4.3. Radial distribution functions, g(R), for liquid H2O at various tempera-
tures and for liquid D2O at 4 °C, as determined by Narten et al. (1967). Note
that the base line of each curve is one unit above that for the curve below.
The points were determined from experiments. The solid curves were cal-
culated from a model which is described in Section. 4.2 (b). The experiments at
and below 100° C were carried out at atmospheric pressure; those above 100 °C

were at the vapour pressure of the sample. From Narten et al. (1967).
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Diffraction patterns and distribution functions
By examining X-ray diffraction patterns of water, Bernal and

Fowler (1933) inferred that tetrahedral groupings of molecules occur
frequently in the liquid. (This fundamental discovery was, however,
made without determining the distribution functions; Bernal and Fowler
calculated the diffraction patterns expected for various models of the
D-structure of water, and compared the results with the observed
patterns.)

From the structure of ice and the density of water (Section 4.3 (6)),
Bernal and Fowler suspected that liquid water has a more open structure
than do nearly close-packed simple liquids such as argon and neon.
Indeed they found that the calculated X-ray diffraction pattern for a
disordered, close-packed arrangement of molecules is very different
from the observed diffraction pattern of water. Calculated patterns
for various tetrahedral arrangements of water molecules—arrangements
isomorphous with ice I and the silicon atoms of quartz—resembled the
experimental pattern of water near the melting-point much more closely.
On the basis of the experimental diffraction pattern for 2 °C, they
suggested that the tetrahedral coordination might bear some resem-
blance to ice I, and that the contraction of water during warming to
4 °C might represent the completion of a transition to a more compact
form of tetrahedral coordination. At higher temperatures, calculated
patterns for a mixture of quartz and close-packed structures matched
the experimental pattern. Their over-all conclusion was that water
molecules are predominantly coordinated to four neighbouring molecules
at room temperature and below, thus forming an extended, three-
dimensional network of molecules, but that this four-coordination breaks
down as the temperature rises.

We should note in passing that Bernal and Fowler attributed the
tendency of water molecules towards four-coordination to the tetra-
hedral character of the water molecule (Section 1.2(6)). They noted
that the charge distribution of a water molecule resembles a tetrahedron
with two positive and two negative corners. Extensive four-coordination,
they emphasized, is a consequence of both the attraction of a positive
corner (a hydrogen atom) to a negative corner (a lone-pair of electrons)
and the presence of two positive and two negative corners in each
molecule.

The experimental radial distribution functions for water substantiate
Bernal and Fowler's conclusions about the four-coordination of water
molecules and provide details on the average separation of the molecules
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in the liquid. The most accurate X-ray diffraction measurements of
water to date are those of Narten, Danford, and Levy (1966, 1967). The
radial distribution functions derived from these measurements (Figs. 4.3
and 4.4) are in fair agreement with the earlier work of Morgan and
Warren (1938). Narten et al. (1966) believe that differences between
their results and those of previous investigators! are due primarily to
neglect in the previous work of data for large scattering angles.

The g(R) curves from the study of Narten et al. (1967) are shown in
Fig. 4.3. Note that g(B) vanishes for all values of R less than 2-5 A,
indicating that water molecules do not approach within 2-5 A of the
central molecule. This result is expected in view of the rapid increase
of overlap repulsive forces for intermolecular separations less than
2-8 A (Section 2.1 (a)). At 4 °C, g(R) is nearly equal to unity for all S
greater than 8 A, showing that the average density of neighbouring
molecules at these distances is equal to the bulk density. This means, of
course, that the order imposed by the central molecule on the average
positions of its neighbours does not extend beyond 8 A. As water is
heated, this short-range order extends even less far; it does not go
beyond 6 A at 200 °C. The well-resolved peak centred near 2-9 A is due
primarily to the nearest neighbours of the central molecule, and the
maximum of the peak gives an approximate value for the average
separation of nearest neighbours in the liquid.

In the ^7rBzp(R) functions of Narten et al. (Fig. 4.4), the maximum
of the first peak shifts gradually from 2-82 A to 2-94 A as the temperature
is increased from 4 to 200 °C. At 4 °C peaks are also visible near 4-5 A and
7 A, but these become less sharply defined as the temperature increases.
A relative maximum near 3-5 A is present at 4 °C and persists until at
least 50 °C. All changes in the radial distribution function with tempera-
ture seem to be gradual. The radial distribution functions for H20 and
D20 at 4 °C are nearly identical.

Both Morgan and Warren (1938) and Narten et al. (1966) estimated
the average number of nearest neighbours from the area under the first
peak of their radial distribution curves. Such calculations are not
without ambiguity, since the right-hand side of the peak is not fully
resolved. Narten et al. found that the average number of nearest
neighbours is about 4-4 at all temperatures from 4 to 200 °C; Morgan and
Warren (1938) found that the number increases from 4-4 at 1-5 °C to
4-9 at 83 °C. From these results it is clear that molecules in liquid

f Previous investigations include, among others, those of Katzoff (1934), Morgan
and Warren (1938), Brady and Romanow (1960), and Heemskerk (1962).



Fio. 4.4. Radial distribution functions, ±TtR*p(R), for liquid H2O at various
temperatures and for liquid D2O at 4 °C, as determined by Narten et al. (1966).
The solid line is 4irK2po> where pc is the bulk density of water. From Narten

et al. (1966).
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water have on the average approximately four nearest neighbours.
Similar techniques give very different figures for the number of nearest
neighbours in simple liquids: neon and argon, for example, are found
to have an average of 8-6 and 10-5 nearest neighbours respectively
(Fisher 1964).

Further evidence for four-coordination of molecules in liquid water
comes from the sequence of positions of peaks and troughs in the radial
distribution function. In ice I, where each water molecule is surrounded
by four others and where all H20 — -H20—-H20 angles are almost exactly
tetrahedral (that is, equal to cos-1( —1/3); see Section 3.!(«)), each
molecule has a high concentration of neighbours at distances of 2-76 A,
4-5-5-3 A, and 6-4-7-8 A; but no neighbours between 2-76 and 4-5 A
or between 5-3 A and 6-4 A (Table 4.1). Now the peaks of the radial
distribution functions for water shown in Figs. 4.3 and 4.4 roughly
coincide with the distances of high concentration in ice I. Moreover,
a trough is evident in the radial distribution in the 5-3-6-4 A region
where no neighbours exist in ice I. Hence most features of the radial
distribution function for water are consistent with tetrahedral co-
ordination of molecules. Morgan and Warren (1938) noted a gradual
disappearance with rising temperature of the peak near 4-5 A in their
radial distribution functions and took this as an indication that the
tetrahedral coordination in water is less sharply denned or less frequent
at higher temperatures.

One feature of the radial distribution functions of Fig. 4.3 that is not
consistent with strict tetrahedral coordination is the distinct peak near
3-5 A. We shall consider several explanations for the origin of this
feature in the following section.

The information about structure that has come from X-ray diffraction
studies of water may be summarized as follows.

(1) Averaged over a long period of time (say ~ 10~8 s or more), the
distribution of distances of neighbouring molecules from any given
molecule in the liquid is not random. Near the melting-point, the
distribution of distances is strongly non-random within about 3 A of the
given molecule, more random within the range 3-8 A from the molecule,
and completely random beyond 8 A. In other words, beyond 8 A from
the given molecule, other molecules are to be found at all distances with
equal likelihood. At 200 °C, the distribution of distances is random
beyond 6 A.

(2) Averaged over a long period of time, relatively large concentrations
of molecules exist at about 2-9 A, 4-5-5-3 A, and 6-4-7-8 A from each

855339 M



TABLE 4.1

X-ray diffraction studies of liquid water and intermolecular separations in ice polymorphs

Investigators

Narten et al. (1966)

Temperature
(°C)

4
200

Morgan and Warren (1938) 1-5
83

Number and distance
in ices I and II : J
Ice I

Ice II

of neighbours to an arbitrary

Apparent number of
neighbours in first
coordination shell

4-4
4-4
4-4
4-9

central molecule

Location of maxima in
4ir8V(-R) vs- & (A)

2-82 3-7f
2-94
2-90
3-05

4 at 2-76

4 at 8 at
2-75-2-84 3-24-3-89

4-5f 7f

4-5f 6-9f

22 at 41 at
4-51-5-28 6-44-7-80
9 at
4-22-5-05

f These maxima become less sharply defined with increasing temperature.
t Values for ice II calculated by Levine (1966) from data of Kamb (1964).
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molecule. This sequence is consistent with tetrahedral coordination of
molecules in the liquid. The substantial concentration of molecules near
3-5 A cannot be explained by strict tetrahedral coordination.

(3) Averaged over a long period of time, each molecule has four, or
perhaps slightly more, nearest neighbours.

(b) Interpretation of the radial distribution function in terms of V-structures
The radial distribution function gives the average local density of

molecules at distance S from the central molecule, and is thus indicative
of the D-structure of the liquid. We cannot deduce all that we want to
know about the structure of liquid water with this information alone.
In the first place, the radial distribution function by itself tells nothing
about the angular distribution of neighbouring molecules. Fortunately,
this is not crucial, because supplementing the radial distribution function
with knowledge about the structure of ice and the density of water
suggests that tetrahedral coordination is a frequent configuration in the
liquid. A more serious limitation of the radial distribution function is
that it reveals nothing about the distributions of molecules around the
central molecule during short periods of time (that is, nothing about the
V-structures), other than the average of them all.

Since the D-structure is the space average of all local V-structures that
are simultaneously present in the liquid (Section 4.1 (a)), many authors
have attempted to interpret the radial distribution functions for water
as an average of radial distribution functions for several V-structures. In
this section we shall consider four schemes for decomposing the observed
radial distribution function into contributions from local V-structures.
Each of these schemes corresponds to one of the models for liquid water
that we shall discuss later in this chapter and in Chapter 5, so that this
section will also serve as an introduction to the more popular models for
water. It should be emphasized from the start that all four of these
models (and many others besides) are on the whole consistent with the
X-ray diffraction pattern of water. Other experimental data, of the
sort presented in subsequent sections of this chapter, must be used to
decide which, if any, corresponds to the structure of the real liquid.

Mixture models
A 'mixture model' depicts the structure of water at any instant as

a mixture of a small number of distinguishable species of water molecules.
A species, in the terminology we have been using, is a local V-structure.
In one type of mixture model two species of water molecules are supposed
to be present at any given instant: molecules in 'clusters' and monomeric,
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non-hydrogen-bonded molecules. The molecules in clusters are hydrogen-
bonded to four neighbouring molecules. The clusters are constantly
breaking up and re-forming, so that over a long period of time every water
molecule has the same average environment.

FIG. 4.5. Interpretation of the radial distribution curves of water in terms of
the mixture model of Nemethy and Scheraga (1962). The experimental curves
are from the work of Morgan and Warren (1938). Peaks A and B show the
contributions of. respectively, hydrogen-bonded and non-hydrogen-bonded
first neighbours. Peak C and curve B' show, respectively, the contributions of
hydrogen-bonded and non-hydrogen-bonded second neighbours. The vertical
lines in the 1-5 °C curve represent the position and relative number of neighbours

in ice I. From Nemethy and Scheraga (1962).

Nemethy and Scheraga (1962) interpreted the radial distribution
curves found by Morgan and Warren (1938) in terms of a mixture model.
They considered the first peak of the experimental curves to be the sum
of two peaks (see Fig. 4.5): one (peak A) centred at R = 2-76 A was
attributed to hydrogen-bonded nearest neighbours; the other (peak B)
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centred near 3-2 A was attributed to non-hydrogen-bonded nearest
neighbours. They centred another peak (C) near 5 A, and assigned it
to the contribution of hydrogen-bonded second neighbours. Nemethy
and Scheraga attributed the residual area (curve B'), once curves
A, B, and C are subtracted from the experimental curves, to non-
hydrogen-bonded second neighbours. They determined the area of
peak A from the concentration of hydrogen-bonded molecules predicted
by their theory and centred this peak at the nearest-neighbour separation
of ice I. Peak B was determined by subtracting peak A from the first
peak of the experimental curve. They also calculated the area of peak B
from the concentration of non-hydrogen-bonded molecules predicted by
their theory, and the results of the two methods were in close agreement.
Peak C is a qualitative representation.

Rising temperature, according to Nemethy and Scheraga's ideas,
increases the concentration of non-hydrogen-bonded molecules. This
causes a broadening of the first peak of the experimental distribution
curve, and loss of structure at higher E values (see Fig. 4.5). In applying
their theory to D20, Nemethy and Scheraga (1964) predicted that the
radial distribution function for D20 would be nearly identical to the one
for H20. This prediction was subsequently confirmed (see Pig. 4.4).

Interstitial models
Interstitial models are a special class of mixture models: one species

of water molecule is supposed to form a hydrogen-bonded framework
containing cavities in which the other species, single, non-hydrogen-
bonded water molecules, reside.

Samoilov (1965) interpreted the radial distribution function in terms
of an interstitial model. His reasons for favouring an interstitial model
included the comparison, shown in Pig. 4.6, of the observed radial
distribution function with a calculated distribution function for a
'smoothed out' ice crystal. Prom this figure it is evident that water has a
higher density of neighbours than ice at about 3-5 A. Samoilov also noted
that each molecule in ice I is 3-47 A distant from six 'cavity centres'.
These cavities can be seen in Pig. 3.1; they join one another along
the c-axis to form the open shafts shown in Pig. 3.2. The existence both
of cavities in ice at about 3-5 A from each molecule and a higher density
in water than ice at about 3-5 A, suggested to Samoilov that liquid water
is similar to ice but has molecules in the cavities. As ice melts, according
to Samoilov, some of the molecules break their hydrogen bonds with the
lattice and move into neighbouring cavities. These interstitial molecules
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account for the increased radial density around 3-5 A. Since the cavity
centres are also 2-94 A from six framework molecules, the interstitial
molecules contribute substantially to the first peak of the radial distribu-
tion curve. Samoilov believes this accounts for the observation of Morgan

FIG. 4.6. Comparison of the experimental radial distribution curve, 4:TrR'ip(R),
for water at 1-5 °C (curve A), and the calculated radial distribution of an 'ice-
like' distribution (curve B). Curve C is the difference of A and B. Curve B is
for 4 neighbouring molecules at an average distance of 2'85 A, 13 at 4-50 A,
and 9 at 5-3 A. This distribution of neighbours is similar to that in ice I (see
Table 4.1) except the first-neighbour distance is taken here as 2-85 A rather
than 2'76 A. Each group of neighbours is distributed about its average
distance in a Gaussian band to simulate vibrations of molecules about their

mean positions. From Morgan and Warren (1938).

and Warren that the apparent number of nearest neighbours exceeds
four even though tetrahedral coordination is partially broken down in
the liquid.

Danford and Levy (1962) and Narten et al. (1967) made extensive
calculations of radial distribution functions for an interstitial model
similar in some respects to Samoilov's model. The framework in this
model is an ice I lattice that is permitted to expand anisotropically
with increasing temperature. The interstitial molecules are located in
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the cavities, but, in contrast to Samoilov's model, they are restricted
to the triad axis. The ratio of interstitial to framework molecules is
constrained to reproduce the experimental density. By treating three
model distances, the root-mean-square displacements of the model
distances, and the occupancy of framework and cavity sites as variable
parameters, the authors were able to calculate radial distribution
functions in close agreement with experiment. The agreement can be
seen in Fig. 4.3. The authors found that the occupancy of cavity sites
increases from 45 per cent at 4 °C to 57 per cent at 200 °C.

An interstitial model apparently inconsistent with the observed radial
distribution for water is Pauling's (1959) 'water hydrate' model (Section
5.2 (6)). Danford and Levy (1962) showed that the radial density pre-
dicted by this model is smaller than the experimental density in the range
R = 2-8-3-6 A, and much larger in the range E = 3-6-4-9 A. This work
seems to be the only one in which a proposed model for water has been
shown by quantitative methods to be inconsistent with the experimental
radial distribution function. We should note that although the calcula-
tion indicates that Pauling's model does not accurately represent the
D-structure of water, the model may still represent one of several local
V-structures that exist in the liquid.

Distorted hydrogen-bond model
Pople (1951) developed a model for liquid water in which the majority

of hydrogen bonds are regarded as distorted rather than broken. To
facilitate interpretation of the observed radial distribution in terms of
the bending of hydrogen bonds, he assumed that all molecules in liquid
water are hydrogen-bonded to four neighbours, each at a fixed distance
of BQ. Accordingly, nearest neighbours are constrained to be B0 distant
from the central molecule, but the distances from the central molecule
to the second (next-nearest), third, and further neighbours will depend
on the extent of hydrogen-bond bending. This situation is illustrated in
Fig. 4.7. Pople further assumed that each water molecule is exactly
tetrahedral, so that angles between 0-H bond directions and lone-pair
directions are all cos~1( —1/3). A hydrogen bond is considered undis-
torted in Pople's model when both the O-H of a donor water molecule
and the lone-pair to which it is hydrogen-bonded lie along the oxygen-
oxygen line of the two molecules. In other words, the energy of hydrogen-
bond bending vanishes when all H20 —H20 —H2O angles are tetra-
hedral, as is the case in ice I. When either the lone-pair direction or the
O-H bond direction depart from the oxygen-oxygen line by an angle (f>,
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the hydrogen bond is distorted, and the energy of the system is increased
by

The quantity k^ in this equation is called the 'hydrogen-bond bending -
force constant' by Pople; it will be discussed further in section 5.3.

FIG. 4.7. Hydrogen-bond bending in water according to Pople (1951). Molecule
A is the central molecule and B, C, and D are neighbours. Each lobe represents
either an O—H bond or a lone-pair of electrons, and the angles fa show the

amount of bond bending. The nearest-neighbour distance, R0, is fixed.

Pople regarded the observed radial distribution function in the range
-R = 0-6 A as the sum of contributions from the nearest, second, and
third neighbours. He formulated expressions for these contributions and
then fitted the sum of the contributions to the experimental distribution
curves of Morgan and Warren (1938). The four nearest neighbours were
assumed to be distributed in a Gaussian band about R = _R0, and the
expression for their contribution contains two parameters determining
the position and width of the distribution. Pople employed classical
statistical mechanics and rather involved analytical geometry to
derive expressions for the contributions of the second and third neigh-
bours. These contributions depend on the ratio of the hydrogen-bond
bending-force constant to the temperature and on the number of second
and third neighbours, in addition to the positions of the nearest neigh-
bours. By varying the number of neighbours, the hydrogen-bond bending-
force constant, and the parameters of the Gaussian distribution of the first
neighbours, Pople achieved a good fit to Morgan and Warren's experi-
mental distribution functions. The best fit was obtained with the
following values for parameters: a hydrogen-bond bending constant of
3-78 x 10~13 erg radian"2, 11 second neighbours and 22 third neighbours,
and an average distance for the nearest neighbours of 2-80 A at 1-5 °C
and 2-95 A at 83 °C.

The calculated contribution to the radial distribution curve of each



FIG. 4.8. Contributions to the radial distribution function of water as cal-
culated by Pople (1951). (a)l-5°C. (6)83°C. Experimental results of Morgan
and Warren ( ). Calculated contributions of separate shells of neighbours

 ). Calculated total ( - • - • _ • ) . From Pople (1951).
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of the first three shells is shown in Fig. 4.8. From these it is seen that the
bending of hydrogen bonds causes the second- and third-neighbour
contributions to be more diffuse than the nearest-neighbour contribu-
tions. This means that the variety of possible local V-structures in
liquid water is far greater than the number in ice. Note especially that
hydrogen-bond bending permits some of the second and third neighbours
to penetrate into regions near the central molecule. In some local
V-structures second or third neighbours are within 3-0 A of the central
molecule. This offers an explanation for two features of the observed
radial distribution functions:

(1) Apparent numbers of nearest neighbours greater than four (Table
4.1) can arise from the superposition of the tails of the distributions
of the second and third neighbours with the distribution of nearest
neighbours. At higher temperatures (Fig. 4.8 (6)) the tails become
more pronounced and the apparent number of nearest neighbours
increases.

(2) The high density of water around 3-5 A relative to ice (Fig. 4.6) is
also caused by the penetration of non-nearest neighbours into
regions closer than 4-0 A from the central molecule.

Finally, we should note that Pople's model does not account for the
small peak which appears at about 3-5 A in the recent radial distribution
functions of Narten et al. (1966). This peak can be explained by the
model which we consider next.

Random network model
A model for the V-structure of water suggested by Bernal (1964) may

be considered an extension of the distorted Irydrogen-bond model. Each
water molecule is hydrogen-bonded to four other molecules, although
the bonds may be considerably distorted. The linked, four-coordinated
molecules form, instead of an ordered lattice as in the ices, an irregular
network of rings. Many rings contain five molecules, because the
H-O—H angle of a water molecule is near to the 108° angle of a five-
membered ring, but others contain four, six, seven, and more molecules.

The radial distribution function for a random network of rings would
be generally similar to that for Pople's bent hydrogen-bond model but
would differ in one respect: the random network would produce one
or possibly several small peaks in the function between the larger peaks
near 2-9 and 4-5 A. These small peaks would arise from at least two
types of configurations:
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(1) Four-membered rings: rings formed by four hydrogen-bonded
water molecules are found in ice VI (Fig. 3.8). The oxygen-oxygen
distance of hydrogen-bonded molecules in these rings is 2-81 A and
the separation of non-hydrogen-bonded molecules is about 3-5 A.

(2) Juxtaposition of two six-membered rings by means of bent hydro-
gen bonds in such a way that non-hydrogen-bonded molecules are
held closely together. Such a configuration is found in ice II, where
every molecule has a non-hydrogen-bonded neighbour at a distance
of 3-24 A. In addition, each molecule has seven other neighbours
in the range 3-52-3-89 A (Table 4.1).

Bernal (1964) reported that a rough calculation of the radial distribu-
tion function for a random network of rings was in general agreement
with experiment. No extensive calculations have been reported which
would determine if this model can account for the peak near 3-5 A in the
experimental distribution functions.

4.3. Thermodynamic propertiesf
In this section we summarize some of the most important thermo-

dynamic properties of liquid water, and discuss the molecular motions
and interactions that account for them. We consider the thermal
energy first and then the P-V—T properties; in both cases we discuss
interpretations of the experimental data in terms of models that have
been proposed for the structure of water.

It is impossible, of course, to infer details of the V-structure of a liquid
from thermodynamic measurements alone. This is because the time
elapsed during a typical thermodynamic measurement is much longer
than the interval between diffusive motions of molecules. Once a
structural model has been proposed on the basis of other data, however,
the thermodynamic properties associated with the model can be com-
puted by statistical mechanical methods. If a model accurately describes
a liquid and if the computations are carried out rigorously, then the
calculated properties must agree with experiment. Unfortunately, truly
rigorous calculations for water are not yet possible and consequently
the thermodynamic properties cannot be used at present to confirm any
particular model of the liquid structure (see Chapter 5).

f Dorsey (1940) compiled a wealth of thermodynamic data on water. More recently,
Stimson (1955) assembled accurate CP data for atmospheric pressure; Owen et al. (1956),
Kennedy et al. (1958), and Kell and Whalley (1965) reported additional P—V—T measure-
ments ; Sharp (1962) tabulated P—V—T data and thermal energy functions for the range
-10-1000 °C and 1-250 000 bars; and Kell (1967) gave expressions for the accurate
representation of P—V—T properties at atmospheric pressure.
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(a) Thermal energy
The temperature dependence of the heat capacity, enthalpy, entropy,

and Gibbs free energy of water under 1 atm pressure are shown in Fig.
3.12. The heat capacity was determined by direct measurement and the

FIG. 4.9. The temperature dependences of the heat capacity at constant
volume, Cy, and the heat capacity at constant pressure, CP, of water at 1 atm
pressure. Values of Of were converted from the values reported by Stimson
(1955), assuming that the molecular weight of water is 18-01534 and 1 joule
= 0-23895 cal. Values of Gv were calculated from the thermodynamic relation-
ship <7V = Op—TF/J2/yT, using the CP values of this figure along with data of

Figs. 4.13, 4.14, and 4.15.

other quantities by integration of the proper functions of the heat
capacity. Because the value of PV for liquid water at 1 atm pressure is
less than 0-0005 kcal mol"1, the internal energy and Helmholtz free
energy of this phase are virtually equal, respectively, to the enthalpy
and Gibbs free energy. The heat capacity of liquid water, as noted in
Section 3.3 (6), is nearly twice that of ice at the melting-point, and
more than twice that of steam at the boiling-point. The heat capacity
at constant volume decreases by about 11 per cent as water is heated
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from 0 to 100 °C, whereas the heat capacity at constant pressure changes
by less than 1 per cent over the same range, passing through a minimum
near 35 °C. This behaviour is shown in Fig. 4.9.

The sharp increases in the enthalpy at the melting- and boiling-points
represent the latent heats of fusion and vaporization. Accurate values
for these enthalpy changes are listed in Table 3.7, along with other
thermodynamic constants for phase changes of H20 and D20. Note that
the internal energy of fusion is almost exactly equal to the enthalpy of
fusion; but the internal energy of vaporization is some 0-7 kcal mol"1

less than the enthalpy of vaporization owing to the large volume change
on vaporization.

Molecular basis of thermal energy
Comparison of the thermodynamic properties of water with those of

other liquids suggests that hydrogen bonds greatly affect the properties
of water. Consider the heat of vaporization as an example. The molal
heats of vaporization for the related sequence of compounds H2Te,
H2Se, H2S decrease with decreasing molecular weight. This might lead
one to expect that H20, the next compound in the sequence, would
have an even smaller heat of vaporization; but H20 has a heat of
vaporization more than twice that of H2S. This shows, of course, that
the cohesive forces between water molecules are extraordinarily strong.
The most likely origin of the extra cohesive energy of water is hydrogen
bonding between molecules in the liquid. The presence of hydrogen
bonding in water also provides a qualitative explanation for the unusual
values of other thermodynamic properties, including the melting-point,
boiling-point, and heat capacity. See Edsall and Wyman (1958) and
Pauling (1960) for discussions of the effect of hydrogen bonding on these
and other properties.

Some progress towards a more quantitative understanding of the
thermodynamic properties of water—particularly the heat capacity
and the related thermal energy functions—has been made in recent
years. Basic to this understanding is the concept of configurational
contributions to the thermodynamic properties.f These contributions
arise when the structure of a phase changes with temperature or pressure;
for instance, each molecule in a phase may be able to exist with two
coordination numbers, one of which predominates at low temperature,

f The concept of configurational contributions to thermodynamic properties has
been discussed by Bernal (1937) and Kauzmann (1948) among others. Davis and Litovitz
(1965) considered possible values for the conflgurational contributions (called 'relaxa-
tional' contributions by them) to the thermodynamic properties of water.
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the other at high temperature. Such structural changes are accompanied
by changes in energy that produce contributions to the heat capacity and
compressibility. Since the crystal structure of ice does not change with
the temperature, there is no configurational contribution to its heat
capacity in the sense defined here; raising the temperature of ice increases
its energy solely through the excitation of intermolecular vibrations.
When liquid water is heated there is a similar excitation of vibrations,
but this can account for only about half of the heat capacity of water.
The rest of the thermal energy required to heat water must be utilized
in changing the structure of the liquid—by breaking and deforming
hydrogen bonds, by changing coordination numbers, etc. Indeed, we
know from the radial distribution function (Section 4.2 (a)) that such
changes do occur as water is heated; this function changes with tempera-
ture, showing that the average relative positions of water molecules are
altered during heating; and this means, of course, that the potential
energy associated with the interactions of water molecules changes with
temperature.

Let us call the contribution to the heat capacity arising from this
change the configurational heat capacity. If we call the contribution
arising from the excitation of mechanical degrees of freedom the vibra-
tional heat capacity, we can express the observed heat capacity in the form

CV (observed) = (7v(vib)+CV(config). (4.3)

Similarly, the internal energy, the coefficient of expansion, and the
compressibility of the liquid can each be regarded as the sum of a
vibrational and a configurational contribution.

The term 'vibrational' may be slightly misleading in this context,
since the degrees of freedom that contribute to Cy(vib) maybe rotational
and translational as well as vibrational. In steam near 100 °C, for
example, increases in the kinetic energy of molecular rotation and
translation each contribute %R to the heat capacity, or a total of
3.R = 5-96 cal/mol-°C. This is only slightly less than the observed Cy
of steam at 100 °C, 6-2 cal/mol—°C (see Fig. 4.10), so that changes in
the potential energy of the molecules with temperature contribute very
little to Cy. In any case if we stretch our use of the term 'vibrational'
to include rotational and translational degrees of freedom, then the heat
capacity of steam, like that of ice, is 'vibrational'.

A simple calculation confirms that the heat capacity of ice is largely
vibrational. Suppose that a mole of ice executes QN modes of inter-
molecular vibration: 3N hindered translations and 3N librations. If
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it is further assumed that the frequencies of both types of modes are
distributed in Uebye spectra having characteristic Debye frequencies of
VT and VL, the temperature dependence of Cv can be easily evaluated
from tables (for example, Pitzer 1953). Let us take VT = 200 cm-1 and

FIG. 4.10. Separation of the experimental heat capacity of H2O into vibrational
and configurational contributions. The vibrational contribution was calculated
as described in the text; the configurational contribution is the difference
between the experimental and the vibrational values. The calculation of
the vibrational contribution for the liquid region is described on p. 179. Data
from Dorsey (1940, p. 104) for 100-140 °C, from Fig. 4.9 for 0-100 °C, and from
Giauque and Stout (1936) for —40 to 0 °C. Experimental curve from —40 to
0° C is actually <7P, which is probably several tenths of a cal/mol-°C greater

than Cv.

VL = 800 cm^1, frequencies near the maxima of the VT and VL absorption
bands in ice (Section 3.5 (a)). Fig. 4.10 shows Cy between —40 and 0 °C
calculated from these frequencies. Though this model is certainly too
simple to represent the lattice vibrations of ice accurately, the calculated
heat capacity agrees well enough with experiment to indicate that most
of the heat capacity of ice is vibrational in origin.

In contrast to the heat capacities of ice and steam, the heat capacity
of liquid water is much too large to arise entirely from thermal excitation
of mechanical degrees of freedom. This is evident from another simple
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calculation. It is well known that each fully excited mode of vibration
contributes R to the heat capacity (for example, see Kauzmann 1966).
If each molecule in liquid water participates in six modes of lattice
vibrations (three hindered translations and three librations; Section
4.7 (c)) then the maximum heat capacity of the liquid arising from
vibrations is 6-R =11-9 cal/mol-°C, only about two-thirds of the
observed heat capacity. In fact, the heat capacity arising from vibrations
is certainly less than 6JR since the librational modes are not fully excited
at room temperature. Moreover, if some water molecules undergo free
rotation and translation instead of librations and hindered translations,
the maximum heat capacity will be smaller, because rotational and
translational motions together can contribute a maximum of 3 B to the
heat capacity.

Clearly the configurational contribution to the heat capacity of liquid
water is of the same order of magnitude as the vibrational contribution,
and it is this contribution that is responsible for the marked increase in
the heat capacity at the melting-point. This large configurational
contribution is undoubtedly associated with the distortion, and perhaps
the breaking, of hydrogen bonds. With these ideas in mind, let us see
how different models for the structure of water account for the observed
heat capacity and related properties.

Interpretation in terms of hydrogen-bond breaking
One interpretation of the thermal energy of water is based on the

premise that heating breaks hydrogen bonds. The models that use this
interpretation are those that postulate a mixture or an interstitial model
for water, f Though these studies differ in the specific model taken for
the liquid structure, they all assume that the thermal energy is governed
by the equilibrium 

for which A#° is positive. Thus as the temperature is raised, the equili-
brium shifts to the right and the configurational potential energy of the
system increases.

Two parameters are common to most of these studies: the energy
required to break a hydrogen bond and the fraction of broken hydrogen
bonds in the liquid at some temperature. Let us comment on these
parameters here and consider the values they are given in several studies.
More detailed descriptions of the models adopted in these studies, and
discussion of the accuracy with which the various models are able to

f These studies include the ones of Grjotheim and Krogh-Moe (1954), Frank and
Quist (1961), Nemethy and Soheraga (1962, 1964), Marchi and Eyring (1964), and others.
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reproduce thermodynamic properties, will be presented in Chapter 5.
We shall find that a consistent interpretation of the thermal energy of
water can be given in terms of broken hydrogen bonds, provided the
mathematical model contains sufficient flexibility in the way of adjust-
able parameters.

The usual meaning of the expression 'the energy of the hydrogen bond
in liquid water' is the energy required to convert a hydrogen-bonded
0-H group in the liquid to a non-hydrogen-bonded group still in the
liquid:

Let us denote this energy ̂ H-bond-L- The problem of determining -SH-bond-L
is similar to that of calculating the energy of the hydrogen bond in ice
from Definition 4 of Section 3.6 (a).f The basic difficulty is that a non-
hydrogen-bonded 0-H group in the liquid still interacts with neighbour-
ing molecules through dispersion and other forces, and the energy of
these interactions cannot be evaluated by any direct means. In fact, it
seems likely that the energy of this reaction depends on temperature and
pressure, since the energy of a hydrogen bond is sensitive to the environ-
ment of the bond (Section 3.6 (c)). Various procedures have been used to
estimate ^n-bond-L; and the resulting values range widely (see Table 4.2).
Each procedure constitutes an operational definition for -EH-bond-L' so it
is not surprising that differing values are found. Whether any of the
values in Table 4.2 corresponds to the energy of the reaction depicted by
eqn (4.4) is not certain.

The fraction of broken hydrogen bonds at each temperature is a second
parameter common to several interpretations of the thermal energy
based on mixture and interstitial models. Estimates of this parameter
also cover a wide range: a recent compilation of values for 0 °C (Falk
and Ford 1966) includes eighteen estimates that range from 0-02 to 0-72.
The temperature dependences of a few estimates are shown in Fig. 4.11.
The estimates of Nemethy and Scheraga and of Haggis et al. are based
on thermodynamic data, that of Grjotheim and Krogh-Moe on molar
volume data, and that of Walrafen (1966) on the intensity of the VT band
(Section 4.7 (a)) in the Raman spectrum. Haggis et al. ascribe almost
the entire energy of vaporization to hydrogen-bond breaking. They
thus predict fewer broken bonds in the liquid than do the other authors,
all of whom ascribe a large part of the energy of vaporization to other
forces.

f See Section 3.6 (a) for a discussion of the meaning of the term 'hydrogen-bond
energy'.

855S39 N
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Even spectroscopic estimates of the fraction of broken hydrogen
bonds range widely. Walrafen (1966) estimated from the intensity of
the VT band that over 80 per cent of hydrogen bonds are broken at 65° C,
whereas Wall and Hornig (1965) estimated from the va band that less

FIG. 4.11. Several estimates of the fraction of intact hydrogen bonds in water,
XHB, as a function of temperature.

than 5 per cent of hydrogen bonds are broken at the same temperature.
These and other spectroscopic studies are discussed at length in Section
4.7.

The discrepancies among the estimates for both -BH-bond-L and the frac-
tion of broken bonds in the liquid may have to do with the nature of the
potential energy surface for the interaction of water molecules. The
shape of this surface may be such that the term 'broken hydrogen
bond' is not useful for the description of interactions of water molecules
in the pure liquid. This possibility is considered in Section 4.8 (a).

Interpretation in terms of hydrogen-bond distortion
Models depicting water as an irregular network of molecules linked by

distorted hydrogen bonds have been proposed (Sections 4.2 (6) and 5.3),
so it is important to ask whether such models can account for the thermal
energy of the liquid. A simple calculation suggests that they can. In the
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TABLE 4.2

Estimated values for the energy of a hydrogen bond in liquid water,

-^H-bond-L

Authors

Nemethy and Scheraga
(1962)
(1964) for liquid D2O

Grjotheim and Krogh-Moe
(1954)

Worley and Klotz (1966)

Walrafen (19676)

Walrafen (1966)

Scatehard et al. (1952)

Haggis etal. (1952)-)
Pauling (1940) /

•2>H-bond-L
(kcal/mol-of-
hydrogen-bond)

1-3

1-5

1-3 to 2-6

2-4

2-5

2-8

3-4

4-5

Method of estimation

Fit of thennodynamic functions derived
from a model to experimental values.
Fit of thermodynamic functions derived
from a model to experimental values.
From molar volume as a function of
temperature, and a model of the liquid.
From temperature dependence of overtone
region of infra-red spectrum.
From the temperature dependence of the
uncoupled O— D stretching band in the
Raman spectrum (Section 4.7 (6)).
From the temperature dependence of the
intensity of the vi band in the Raman
spectrum (Section 4.7 (a)).
From thermodynamic properties of hydro-
gen peroxide— water mixtures and auxiliary
assumptions.

From Definition 3 of Section 3.6 (a).

first step of this calculation we estimate the vibrational heat capacity
and vibrational internal energy of water. By subtracting the vibrational
internal energy from the experimental energy, we obtain the configura-
tional contribution to the energy. We then show that if the frequency
of the O—H stretching vibration of water molecules is taken as an index
of hydrogen-bond energy, distortions of hydrogen bonds will account
for the configurational energy.

We compute the vibrational heat capacity for liquid water just as we
did above for ice. We again assume that the hydrogen-bonded network
of water molecules executes QN modes of vibration, and that these
modes are distributed in two Debye spectra, this time having charac-
teristic frequencies of 654 cm-1 and 168 cm-1. The 654 cm-1 frequency
is obtained by scaling the frequency used in the ice calculation by the
ratio of the experimental infra-red absorption frequencies of the »>L band
in water and in ice I (Sections 3.5 and 4.7). The 168 cm-1 frequency
comes from a similar scaling of the 200 cm"1 frequency used in the ice
calculation with the observed infra-red frequencies of the VT band. Using
these frequencies we find the vibrational contribution to Cy of the liquid
shown in Fig. 4.10. Note that Cv(vib) is slightly larger for liquid water
than for ice. Hydrogen bonds are more easily distorted in the liquid and
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thus the vibrating molecules take up more thermal energy than H20
molecules in ice.

The difference between the observed and vibrational heat capacity
is the conngurational heat capacity, which, in the model we are consider-
ing, arises from the increasing distortion of hydrogen bonds as water is

Fia. 4.12. Separation of the observed thermal energy of water into vibrational
and configurational contributions. The vibrational contribution (shaded areas)
was calculated as described in the text and the configurational contribution
was obtained by subtracting the vibrational energy from the observed energy.
The crosses indicate the configurational energy calculated from eqn (4.5) and
experimental O—H stretching frequencies. For the vapour the 'vibrational'
contribution is 3BT, from molecular translation and rotation. Spectroscopic
data come from Falk and Ford (1966) for ice and liquid water and from Benedict
et al. (1956) for water vapour. The O-H stretching frequency of liquid water

at 0 °C was estimated by extrapolation of Falk and Ford's data.

heated. From Fig. 4.10 it can be seen that Cy(conng) is about 50 per cent
of the observed (7V at 0° and decreases to about 35 per cent of Cy at 100 °C.
These are roughly the same values of the configurational heat capacity
as those found by Davis and Litovitz (1965) from a mixture model for
water.

The calculated vibrational contributions to the thermal energy of ice
and liquid water, based on Debye spectra with the same characteristic
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frequencies as used in the heat-capacity calculations, are shown in
Fig. 4.12. The 'vibrational' contribution to the energy of water vapour
is the calculated kinetic energy of molecular rotation and translation,
3BT. As with the heat capacity, the confLgurational contribution is
obtained by subtracting the vibrational contribution from the experi-
mental quantity. On the basis of this calculation, the configurational
energy is roughly 50 per cent of the observed energy over the temperature
range 0-100 °C.

The question we must now consider is whether distortions of hydrogen
bonds can account for this configurational energy. With an accurate
potential function for the distortion of hydrogen bonds we might be able
to answer this question directly; in the absence of such a function we can
still obtain a tentative answer by using the 0— H stretching frequency
as an index of hydrogen-bond strength. From spectroscopic studies it
is known that when an 0-H group forms a hydrogen bond, its stretching
frequency is reduced and that stronger hydrogen bonds are associated
with greater reductions in frequency. Relationships of the form

where C and K are constants, have been proposed for the shift in 0-H
stretching frequency Av0_H when a hydrogen bond of strength AJ?° is
formed. Singh et al. (1966) found, for example, that eqn (4.5) with
0 = 0-010 and K = 2-37 fitted the data for ninety-seven hydrogen-
bonded phenols reasonably well.

For liquid water, Wall and Hornig (1965) suggested that the frequency
of the maximum of the uncoupledf 0-H stretching band is characteristic
of the average hydrogen-bond energy, more distorted hydrogen bonds
having higher frequencies. If this suggestion is correct, and if the
configurational energy arises from distortions of hydrogen bonds, it
should be possible to correlate the frequency of the maximum of the
uncoupled 0-H stretching band with the configurational energy. It
turns out that such a correlation is possible using eqn (4.5). The quantity
Avo_H in (4.5) is taken as the frequency difference of 0-H stretching
of HDO vapour (3707 cm"1) and the maximum of the uncoupled
0-H stretching band in liquid water or ice. The quantity A/7° is taken
as the difference of the configurational energy, per mole of hydrogen
bonds, of water vapour at 100 °C and of liquid water or ice at some lower
temperature. With C = 0-007 and K = 2-70, the configurational energy

f This term was defined in Section 3.5 (a). Wall and Hornig's paper will be discussed
in Section 4.7 (6).
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computed from (4.5) agrees closely with the configurational energy
derived above for all three phases (see Fig. 4.12). This correspondence
suggests that the configurational energy of water may be accounted for
by increased distortion of hydrogen bonds as the liquid is heated. Thus
it seems that a model depicting water as a network of distorted hydrogen
bonds is not inconsistent with the observed thermal energy of water.

(6) Pressure-volume—temperature relations

The molar volume of H20 at atmospheric pressure is shown as a
function of temperature in Fig. 4.13, along with the molar volumes of
several other isotopes. Upon fusion, the molar volume of H2O ice drops
by 8-3 per cent to 18-0182 cm3. As the temperature is raised the molar
volume of the liquid continues to fall, reaching 18-0158 cm3 at 4 °C, and
then gradually increases to 18-798 cm3 at the boiling-point. Note that
the decrease in volume between 0 and 4 °C amounts to only 0-013 per
cent of the volume at 4°, and to only 0-31 per cent of the increase from
4 to 100 °C. The molar volume of liquid D20 passes through a minimum
value of 18-1082 cm3 near 11-2 °C.

Several investigators have maintained that the temperature dependence of the
molar volume of water exhibits abrupt changes of slope or 'kinks'. For example,
Lavergne and Drost-Hansen (1956) performed a statistical analysis of the accurate
density measurements of Chappuis. They concluded (Drost-Hansen 1965 a) that
'the data points in the range from approximately 5 to 41 °C (as far as Chappuis's
data go) may possibly be better represented by three different, distinct curve seg-
ments' than by a single curve. Another kink was reported by Antonoff and Conan
at 50-5 °C (1949). Subsequently Kell and Whalley (1965) searched for this kink but
failed to find it. They measured the specific volume of water at 0-25 °C intervals
from 47-5 to 52-0 °C and found it smooth to 1 ppm. Falk and Kell (1966) examined
numerous reports of kinks in the properties of water, including those mentioned
here; they concluded that the sizes of the reported kinks were in all cases comparable
to the precision of the measurements.

The derivatives of the molar volume with respect to temperature
and pressure are given by the coefficients of thermal expansion and
compressibility. The isopiestic coefficient of thermal expansion,
j3 = (1/F)(8F/8T)P, is shown in Fig. 4.14. It is negative from 0 to 4 °C
where water contracts with increasing temperature, and positive above
4 °C. This figure also shows the region of negative thermal expansion of
ice below 63 °K. Fig. 4.15 shows the isothermal coefficient of compres-
sibility, yT = ~(l/V)(dV/dP)T. It decreases as water is heated from
0 °C, passes through a minimum at 46 °C, and then increases.
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FIG. 4.13. The molar volumes of H2O ice I and four isotopic liquid waters at 1 atm
pressure. The inset is an enlargement of the curve for liquid H2O between — 4 and
+ 12 °C. The data for ice I are from Table 3.10 (6). The curves for the liquid were
calculated from eqn (4.6) and the following molecular weights: H2O, 18-0153; D2O,

20-028; H2
18O, 20-015; T2O, 22-04.

Kell (1967) fitted mathematical functions to the best available P-V-T data for
water at 1 atm pressure. For the temperature dependence of the density he used
the expression
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where t is the temperature in °C. The coefficients producing the optimum fit to
the data for H2O, D2O, H2

18O, D2
18O, and T2O are listed in Table 4.3. The standard

error of eqn (4.6) in representing the data is generally smaller than the estimated

FIG. 4.14. The isopiestic coefficient of thermal expansion, )3, for ice I and
liquid water at 1 atm pressure. Regions of negative ]3 are shaded. Note that
the temperature axis is contracted below 0° C. The data for ice I are from
Table 3.10 and Dantl (1962); those for liquid water are from the compilation

of Kell(1967).

Fio. 4.15. The coefficient of isothermal compressibility, yT, for liquid water
at 1 atm pressure. Data from Kell (1967).

accuracy of the data themselves. The valid temperature range of eqn (4.6) for the
different isotopio species is also given in the table.

To fit the isothermal compressibility at one atmosphere pressure, Kell (1967)
and Kell and Whalley (1965) used the power series
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where t is the temperature in °C and the coefficients are

c0 = 50-9804, Cj = -0-374957, c2 = 7-21324 x 1Q-3,

c3 = -64-1785 xlO-6, c4 = 0-343024 x lO"6, c5 = -0-684212 x 10-».

This expression represents the data from 0 to 150 °C to within 0-04 x 10~6 bar"1.

The negative thermal expansion of water from 0 to 4 °C and the
decrease in compressibility from 0 to 46 °C are anomalous: the compres-
sibilities and volumes of other liquids increase monotonically as they are
heated. Bridgman (1912, 1931) found that these anomalies disappear as
water is compressed. The minimum in the compressibility near 50 °C
becomes less pronounced as pressure is applied and disappears altogether
near 3000 atm. The behaviour of the volume near 0 °C is more compli-
cated and is summarized in Fig. 4.16 (a). The uppermost plot of volume
against temperature is for nearly atmospheric pressure and shows the
familiar minimum at 4 °C. As the pressure is increased to 1000 kg cm-2,
the minimum is displaced to lower temperatures. By 1500 kg cm~2 a
maximum appears near—10 ° Gin addition to the minimum near — 4 °C.
At 2500 kg cm~2, the maximum and minimum merge into a point of
inflexion, and at still higher pressures the volume increases smoothly
with temperature. Thus, under high pressure, the molar volume of
water behaves like that of most liquids.

The change with pressure of the thermal expansion of water is also
complex, as is evident from Fig. 4.16(6). At 0 °C the coefficient of
thermal expansion increases as water is compressed to about 4000 kg
cm~2, but then decreases upon further compression. The thermal
expansion is nearly independent of pressure at 40 °C; at higher tempera-
tures it decreases with pressure, as do the thermal expansions of most
substances. Bridgman summarized the effect of compression on the
thermodynamic properties of water by saying that water becomes
a 'normal liquid' at high pressures.

Molecular basis of P-V-T properties
From the density of water and the structure of ice I, Bernal and Fowler

(1933) reasoned that water must have a more open structure than the
disordered, close-packed structures of simple liquids such as argon and
neon. They noted that the intermolecular separation of water molecules
in ice I is about 2-8 A, corresponding to a 'molecular radius' of about
1-4A. Adisordered, close-packed assembly of molecules with radius 1-4A
would have a density of 1-84 g ml"1. Hence, to account for the observed
density of water, 1-0 g ml-1, one must assume either that liquid water
is a close-packed liquid in which the effective molecular radius has
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FIG. 4.16. P—V—T properties of water at high pressures, (a) Specific volume
of water as a function of temperature for several fixed pressures. The pressures
in units of kg cm~2 are indicated above the curves (1 kg cm~2 = 0'968 atm).
Based on data from Bridgman (1912). (6) The coefficient of thermal expansion
of water, j8, as a function of pressure for several fixed temperatures. From

Bridgman (1931).



TABLE 4.3f

Coefficients for the representation of the density of water by eqn (4.6) and properties of the equation

Coefficients, g em~3

a0

lOX
10«a2

10»a3

1012o4

10l6a5

10%!

Kange of function (°C)
Estimated accuracy of data (ppm)
Temp, of maximum density (°C)
Maximum density (g cm~3)

H2O

0-9998396
18-224944

-7-922210
-55-44846
149-7562

-393-2952
18-159725
0-150
0-5-20
3-984
0-999972

D2O

1-104690
20-09315

-9-24227
-55-9509

79-9512

17-96190
3-5-100

10
11-185

1-10600

H2
18O

1-112333
13-92547

-8-81358
-22-8730

12-44953
1-79

50
4-211
1-11249

D2
180

1-215371
18-61961

-10-70052
-35-1257

15-08867
3-5-72

100
11-438

1-21688

T20

1-21293
11-7499

-11-612

9-4144
5-54

200
13-403
1-21501

f Taken from Kell (1967).
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expanded from its value of 1-4 A in ice to 1-72 A, or that the arrangement
of molecules is much more open in water than in close-packed liquids.
Bernal and Fowler were able to rule out the former possibility from the
X-ray diffraction pattern of water (Section 4.2 (a)). As mentioned above,
they attributed the relatively open structure of water to the presence of
extensive four-coordination of molecules in the liquid.

Interpretations of the temperature dependence of the molar volume
of water are usually based on the supposition that two competing effects
take place as water is heated:

(1) The open structure arising from the four-coordination of molecules
weakens or breaks down, thus reducing the volume. This process
may be regarded as a continuation of fusion.

(2) The amplitudes of anharmonic intermolecular vibrations increase,
thus enlarging the volume.

Effect (1) is dominant below 4 °C where the thermal expansion is nega-
tive, and effect (2) is dominant above 4 °C.

We can consider these two effects as the configurational and vibra-
tional contributions to the coefficient of thermal expansion. Effect (1)
is the configurational contribution, since it is associated with changes in
the average configuration of molecules in the liquid as water is heated.
This contribution to p is negative. Effect (2) is the vibrational contribu-
tion to )8; it is positive in sign and, above 4 °C, larger in magnitude than
the configurational contribution.

Let us briefly consider how these effects are treated in studies which
assume different models for the structure of water (Section 4.2 (6) and
Chapter 5):

Mixture models (for example, Grjotheim and Krogh-Moe 1954,
Nemethy and Scheraga 1962): hydrogen-bonded clusters are assumed to
have a larger molar volume than non-hydrogen-bonded water. Hence
the conversion of clusters to non-hydrogen-bonded molecules as water
is heated gives rise to a negative AF and accounts for effect (1). Vibra-
tional thermal expansion of both the clusters and the non-hydrogen-
bonded molecules accounts for effect (2).

Bridgman (1931, p. 144) stated that a mixture model can completely explain
the temperature dependence of the molar volume at high pressures (Fig. 4.16 (a)).
It must be assumed that the clusters are more compressible than the rest of the
liquid. As the pressure is increased, the molar volume of the clusters approaches
that of the rest of the liquid, and effect (1) becomes less pronounced. Eventually
the volumes of the two components are identical and the liquid exhibits normal
thermal expansion.
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A different explanation for the high-pressure data is the following: owing to the
smaller volume of the non-hydrogen-bonded molecules, pressure shifts the equili-
brium between clusters and non-hydrogen-bonded molecules towards the latter.
At high pressures, fewer molecules remain in clusters and effect (1) becomes less
important than effect (2). According to this view, the part of the compressibility
that arises from the shift in equilibrium can be considered the configurational
contribution, and the part that arises from compression of the individual com-
ponents can be considered the vibrational contribution. If one could measure
the compressibility of the liquid within a very short time (say within 10~u s), only
the vibrational contribution would be detected since the diffusional jumps of
molecules that give rise to the configurational contribution cannot take place.
Rapid measurements of the compressibility can be made by ultrasonic methods.
Slie et al. (1966) estimated from ultrasonic measurements on glycerol-water
mixtures that the configurational contribution to yT of pure water is about 64 per
cent of the observed yT at 0 °0. Davis and Litovitz (1965) calculated a similar
value for the configurational contribution from a mixture model for water.

Interstitial models (for example, Samoilov 1965, Danford and Levy
1962): as hydrogen bonds are broken, molecules move from the frame-
work into cavities. This is accompanied by a negative AF, and accounts
for effect (1). Effect (2) arises from increased vibrational amplitude of
the framework at higher temperature.

Distorted hydrogen-bond model (Pople 1951): as described in Section
4.2 (b), the bending of hydrogen bonds in liquid water brings the non-
nearest neighbours of a molecule much closer on the average than they
are in ice I. Pople (1951) showed that the AF of fusion may be attributed
to this process. Heating water continues this collapse to a small extent,
and thus accounts for effect (1). Effect (2) is attributed, as in other
models, to increased vibrational amplitudes.

4.4. Static dielectric constant and NMR chemical shift
The static dielectric constant and the NMR chemical shift of water

are properties characteristic of the D-structure of the liquid. Both
properties are measured by means of electromagnetic waves having
frequencies in the range 103-108 c/s. During a single oscillation of a
100-Mc electromagnetic field an average molecule experiences at least
1000 diffusional jumps, so that these properties yield no direct informa-
tion about the arrangements of molecules during very short intervals
of time (10-ns).

(a) Static dielectric constant^
Among the most accurate determinations of the static dielectric

constant of water, e0, is that of Malmberg and Maryott (1956). These

f Hasted (1961) has reviewed the literature on the dielectric properties of water.
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investigators measured e0 at 5° intervals from 0 to 100 °C at atmospheric
pressure and believe that their results have a maximum uncertainty of
J^O-05 units. Their data, which are shown in Pig. 4.17, fit the equation

FIG. 4.17. Experimental and calculated values for the static dielectric constant of
liquid water as a function of temperature.

where t is the temperature in ° C. The data show nearly the same tempera-
ture dependence as the earlier measurements of Wyman and Ingalls
(1938) but the values are smaller by about 0-25 units; the values are also
smaller, by up to 0-17 units, than the more recent determination of e0

from 0 to 40 °C by Vidulich at al. (1967). The temperature coeffi-
cient (dlne0/8T)P derived from eqn (4.8) is nearly constant at
— 4-55 (±0-03) X 10-3 "C-1 from 0to 100 °C. Owenetal. (1961) measured
the pressure coefficient of e0. They found that (8ln€0jdP)T increases
from 45-1 X 10~6 bar-1 at 0 °C to 52-4 x 10-6 bar-1 at 70 °C.

A search by Rusche and Good (1966) for a kink reported to exist near
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15 °C in the temperature dependence of e0 (Drost-Hansen 1965 b) yielded
negative results.

The static dielectric constant of water in equilibrium with its vapour
was measured by Akerlof and Oshry (1950) over the temperature range
from the boiling-point to the critical point. They found that the di-
electric constant falls continuously to 9-74 by 370 °C. It may be
described over this temperature range by the equation

where T is the temperature in °K.
Malmberg (1958) determined e0 of liquid D20 over the temperature

range 4-100 °C and found that the data fit the equation

where t is the temperature in °C. The dielectric constant of D20 is slightly
smaller than that of H20 at the same temperature, the difference being
no more than 0-5 unit over the 4-100 °C range.

Calculations of the dielectric constant from models
Several calculations of the dielectric constant of water have been

based on Kirkwood's theory of polar dielectrics. The reader will recall
from Section 3.4 (a) that Kirkwood's equation (eqn (3.6 a)) gives the
dielectric constant of a substance in terms of two properties that can be
calculated from a model: m, the average magnitude of the dipole moment
m of a molecule immersed in the substance; and g, the correlation para-
meter (eqn (3.7)) that expresses the degree of angular correlation of the
dipole moments of neighbouring molecules with the dipole moment of
an arbitrary central molecule.

Oster and Kirkwood (1943) calculated the dielectric constant of water
by assuming that molecules in the liquid are approximately tetrahedrally
coordinated. They supposed that neighbouring molecules are connected
by rigid hydrogen bonds, but that free rotation is possible about the
bonds. They took the area under the first peak of the radial distribution
curves of Morgan and Warren (Table 4.1) as the number of nearest
neighbours, although they noted that these non-integral coordination
numbers larger than four (between 4-4 and 4-9) are not entirely con-
sistent with their simple model. This procedure led to a value for m of
about 2-35 D. In calculating g, they assumed that the directions of only
the nearest neighbours are correlated with the direction of the central
molecule:
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where N± is the number of nearest neighbours as determined from the
radial distribution function at a given temperature, and (cos yx) is the
mean cosine of the angles between the dipole moments of the neighbours
and of the central molecule. The resulting values of g range from 2-63
at 0 °C to 2-82 at 83 °C. Together with the value of m, they yield the
calculated dielectric constant shown in Fig. 4.17. The calculated value
agrees with experiment at 25 °C, but decreases too slowly with increasing
temperature. As Oster and Kirkwood noted, this discrepancy is related
to their questionable result that the g values increase as the tempera-
ture is raised: the greater thermal agitation at higher temperatures
would be expected to distort or break down the tetrahedral structure,
and thus to decrease the angular correlation of molecules.

Pople (1951) applied Kirkwood's equation to his own distorted
hydrogen-bond model (Section 4.2 (6)). He found that g for this model
is given by

where i refers to the ith coordination shell of hydrogen-bonded neigh-
bours, 2<x is the H-O-H angle, and k^ is the 'hydrogen-bond bending-
force constant' (see Section 4.2 (6)). Pople used the values of Jc^ and Nt

that he determined from the radial distribution function to evaluate g
from this expression. He found that the first, second, and third shells
contribute 1-20, 0-33, and 0-07 respectively to g at 0 °C. Thus g ̂  2-60
at 0 °C; it decreases to 2-46 by 83 °C. In calculating m, Pople assumed
that this quantity differs from ju, because of the dipole field of its four
nearest neighbours. His result, m=2-15D at 0 °C decreasing to
2-08 D at 83 °C, is almost certainly too small, because the field arising
from further neighbours as well as from the higher electrostatic moments
of all neighbours is neglected.

The dielectric constant calculated by Pople is shown in Fig. 4.17. The
temperature dependence is correct but the absolute value is about 20 per
cent too low. Pople (1951) suggested that the discrepancy arises from
the small values for m. Better estimates for m can be made by including
the effects of neighbours beyond the nearest four, the only ones con-
sidered by Pople in his calculation of m. A simple method of doing this
is to calculate m in ice I, first by taking into account the electrostatic
field arising from three shells of neighbouring molecules, and then a
second time, taking into account only the field arising from the dipole
moments of the nearest four molecules. The present authors have done
this calculation, using values for the electric field given in a paper by
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Coulson and Eisenberg (1966 a). The ratio of these two values of m
(= 1-14) was then multiplied by the moments calculated by Pople to
obtain revised estimates for m in liquid water. These new estimates for
m are 2-45 D at 0 °C decreasing to 2-37 D at 83 °C. When these values
for TO are combined with Pople's g parameters, the calculated dielectric
constant is close to experiment (see 'Pople adjusted' curve of Fig. 4.17).

Haggis et al. (1952) based their calculation of the dielectric constant
of water on a mixture model. They assumed that a certain fraction,
1—-X^HB' of hydrogen bonds are broken at a given temperature T, and
that the liquid is a mixture of molecules forming 0,1, 2, 3, and 4 hydrogen
bonds. They chose 1— XHB = 0-09 at 0 °C to give agreement with
dielectric data, and determined the temperature variation of XHB (see
Fig. 4.11) from thermodynamic considerations. Taking the energy
required to break a hydrogen bond as 4-5 kcal mol"1, they calculated
the mole fraction of each of the five species as a function of temperature.
By assuming a tetrahedral structure for the four-bonded species, which
has three coordination shells at 0 °C and one coordination shell at the
critical point, they estimated that g for this species decreases from
2-81 at 0 °C to 2-34 at 370 °C. The g parameter for the zero-bonded
species was taken as unity; the g parameters for the remaining species
were determined by interpolation. The authors assumed that TO = 2-45 D
for the four-bonded species at 0 °C and decreases with increasing
temperature. For the zero-bonded molecules, they took TO = 1-88 D,
and interpolated to find values of TO for the other species. When the
resulting values for TO and g, weighted by their respective mole fractions,
are inserted in Kirkwood's equation, the agreement with experiment is
quite good (Fig. 4.17).

Conclusions
Kirkwood's theory shows that the large dielectric constant^of liquid

water arises not only from the polarity of the individual molecules, but
also from the correlated mutual orientations of the molecules. In ice, as
we have discussed in Section 3.4 (a), the tetrahedral arrangement of
molecules results in a partial alignment of the dipole moments of
neighbouring molecules with the moment of an arbitrary central
molecule. This produces a large value of g; it also produces a large value
of TO, since the electric field of the neighbouring molecules induces a
sizeable additional moment in the central molecule. The same effects are
present in liquid water, but to a lesser extent.

Let us picture the D-structure of water as an average over space of
856339 O
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many local V-structures. Around some molecules the neighbours
assume a fairly orderly, tetrahedral arrangement. These regions are
associated with relatively large values of g and m, perhaps almost as
large as those for ice I. Around other molecules, the hydrogen bonding
is more distorted or broken down, and the values of g and m are smaller.
The average values of g and m for the liquid as a whole are therefore
somewhat less than those for ice I. As the temperature is raised and
hydrogen bonding about more molecules becomes distorted or broken
down, the average values of g and m decrease further. This produces a
decrease in the dielectric constant that is greater than the decrease
arising from the opposition of thermal agitation to alignment of the
dipoles in the external electric field.

Both the distorted hydrogen-bond model of Pople (1951) and the
mixture model of Haggis et al. (1952) are able to account for the high
dielectric constant of water. These models are similar in that they
assume that few hydrogen bonds are broken in the liquid below 100 °C.
Pople, of course, assumed that no hydrogen bonds are broken. Haggis
et al. obtained best agreement with experiment by assuming that only
9 per cent of hydrogen bonds are broken at 0 °C; their theory predicts
that only 20-2 per cent of the hydrogen bonds are broken at 100 °C.
Indeed, as noted by Pople (1951), the high value of the dielectric constant
of water is strong evidence for the presence of extensive tetrahedral
coordination in the liquid at temperatures up to 100 °C.

(6) NMR chemical shift

When a proton is placed in a magnetic field it occupies one of two
energy levels, depending on whether a component of its magnetic
moment points in the direction of the field or in the opposite direction.
If an alternating electromagnetic field of the proper frequency is then
applied, it causes transitions of the proton between the two energy
levels, and the proton is said to be in resonance with the field. For a
magnetic field strength of 10000 G, proton resonance takes place in an
alternating field of about 4X 107 c/s. The precise value of the magnetic
field strength for resonance depends on the local environment of the
proton. For example, when an 0-H group of a water molecule forms a
hydrogen bond the magnetic field strength required for resonance
decreases, and it is said that 'the signal shifts downfield'. Thus the
change, with temperature and other variables, of the magnetic field
strength required for resonance can be used as an index of the change in
the average local environment of all protons in the sample.
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The chemical shift, S, is the usual measure of the change in magnetic
field strength, H, required for resonance when the environment of a
proton changes. The chemical shift found for the condensation of water
vapour to liquid water (sometimes called the 'association shift') is given
by (Schneider et al. 1958, Muller 1965):

in parts per million, where t is between 25 and 100 °C. Thus the NMR
signal shifts downfield as steam is condensed, and shifts further down-
field as water is cooled. Similar shifts are observed for other substances
forming hydrogen bonds, the shifts usually being larger for molecules
which form stronger hydrogen bonds. Moreover, the magnitude of the
chemical shift upon condensation is roughly proportional to the change
in X-H stretching frequency during condensation (Schneider et al.
1958). The latter quantity is often taken as an index of the strength of
hydrogen bonding.

Theoretical interpretation

Let us consider why the formation of a hydrogen bond produces a
large chemical shift, and then why the chemical shift of liquid water
depends on the temperature.

The strength of the applied magnetic field, H, which produces reson-
ance is not generally equal to the strength of the local magnetic field
acting on the proton, Hloo. These quantities differ because the applied
field induces currents in the electrons surrounding the proton, and these
in turn produce a secondary magnetic field of strength aH that opposes
H. It follows that the total magnetic field acting on the proton is

where a is a constant called the screening constant, which depends on the
electronic environment of the proton. Now when an 0-H group enters
into a hydrogen bond, the electronic environment of the proton changes
in such a way that a is reduced. Consequently, by eqn (4.12), the mag-
netic field acting on the hydrogen-bonded proton must be larger for
a given applied field, and resonance occurs for a smaller value of
the applied field than it did before the environmental change. Thus the
downfield shift upon hydrogen-bond formation is associated with the
reduction of a.
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Pople et al. (1959) explained the reduction of a during hydrogen-bond
formation by two effects:

(1) The presence of 0B in the 0A-H-~- 0B hydrogen bond alters the
distribution of electronic charge in the 0A-H bond, and thereby
changes the value of a for the 0-H system. Viewing the hydrogen
bond as an electrostatic interaction between 0B and 0A-H, Pople
et al. noted that the electric field of OB tends to draw the proton
away from the electrons in the 0A-H bond, and thus reduces the
electron density around the proton. This has the effect of reducing
a and thus causing a chemical shift downfield.

(2) Induced electron currents in 0B will produce a magnetic field at
the proton. This effect is significant only if the magnetic suscepti-
bility of 0B is anisotropic. It may either reduce or enlarge a, but
in either case it is probably less important than effect (1).

The dependence of the chemical shift of liquid water on temperature
has been interpreted in terms of both hydrogen-bond breaking and
hydrogen-bond distortion. The interpretations in terms of hydrogen-
bond breaking (for example, Muller (1965) and Hindman (1966)) are
based on the assumption that the observed chemical shift at temperature
T, 8(T), is an average of the chemical shifts of hydrogen-bonded and
non-hydrogen-bonded protons in the liquid (denoted §HB and SN-HB
respectively). Within this approximation, the observed chemical shift
may be written

where -X"HB *s the mole fraction of intact hydrogen bonds at temperature
T. The resonance signal of the hydrogen-bonded proton, as mentioned
above, is considerably downfield from that of a proton in the vapour,
whereas the chemical shift for a non-hydrogen-bonded proton in the
liquid is presumably very small. Thus if it is supposed that XH-B decreases
as water is heated, it follows from eqn (4.13) that S(T) becomes less
negative with increasing temperature.

To derive numerical values of -X"HB from eqn (4.13), it is necessary to
estimate magnitudes for 8HB and SN-HB- This was done by Hindman
(1966), who introduced numerous assumptions about the character of
hydrogen bonding in the liquid and estimated that the fraction of non-
hydrogen-bonded water molecules increases from 0-155 at 0 °C to 0-35 at
100 °C. Muller applied eqn (4.13) in a slightly different way: he appraised
estimates for -X"HB based on various models for water by inserting the
estimates into (4.13) and comparing the resulting values of 8HB and
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SN-HB with values he considered to be correct. He concluded that the
estimate of Davis and Litovitz (1965) (^HB equal to 0-82 at 0 °C, de-
creasing to 0-69 at 70 °C) was the most satisfactory of those he examined.

Muller and Reiter (1965) showed that the temperature dependence of
the chemical shift of hydrogen-bonded substances probably arises in part
from the stretching of hydrogen bonds. According to these authors,
increasing the temperature excites the hydrogen-bond stretching mode
to higher vibrational levels. Owing to the anharmonicity of the vibra-
tion, the average separation between the proton and 0B in the
0A-H — 0B hydrogen bond increases with temperature. This increases
the screening around the proton and causes a chemical shift towards
high field, because of effect (1) above. In calculating the value of
d8(T)/dT for the 0A-H--OB hydrogen bond, Muller and Reiter used
several potential functions to describe the stretching vibration, and
several functions to relate § to the H—- 0B separation. Different com-
binations of these functions produced values of dS(T)jdT between
2xlO~ 3 and 8xlO~ 3 parts per million. The experimental value of
d8(T)/dT for liquid water (eqn (4.11)) is 9-5 X 10~3 parts per million.

Hindman (1966) also emphasized that the stretching and bending of
hydrogen bonds probably contribute to the chemical shift of water. He
found that both the calculated chemical shift resulting from the fusion of
ice, and the observed shift on heating water from 0 to 100 °C, can be
accounted for by hydrogen-bond bending and stretching. Both effects
can also be accounted for by a bond-breaking model, as well as by various
combinations of bending, stretching, and breaking. Hindman noted
that if the amounts of bond breaking and bond stretching in the liquid
are known, the chemical shift data impose limits on the amount of bond
bending which can take place.

4.5. Optical properties

(a) Refractive index

Tilton and Taylor (1938) determined the refractive index of water for
visible light to an estimated accuracy of ±lx!0~6 units over the
temperature range 0-60 °C. The shortest wavelength they studied was
the Hg line at 4046-6 A, and the longest was the He line at 7065-2 A.
For all wavelengths studied, the refractive index was observed to increase
with decreasing temperature, and at the longer wavelengths it was found
to pass through a maximum between 0 and 1 °C. They found,
for example, that the refractive index for the Na D-line (5892-6 A)
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increases from 1-3272488 at 60 °C to 1-3339493 at 0 °C. At a given
temperature, the refractive index is slightly smaller for longer wave-
lengths of light. It should be noted that the values of the refractive
index given by Tilton and Taylor are expressed relative to air; these
may be transformed to values relative to vacuum (Tilton 1935).

The refractive index of H20 is slightly greater than that of D20 for
the same temperature and wavelength of light (Shatenshtein et al. 1960).
For the Na D-line, the difference is 0-004687 at 20 °C. The maximum of
the refractive index of D2()as a function of temperature is at about 6-7 °C
(Reisler and H. Eisenberg 1965). Thus for both H20 and D20 the
maximum in the refractive index occurs about 4-5 °C below the maxi-
mum in the density.

Considerable effort has been directed towards finding a simple expres-
sion that relates the refractive index to thermodynamic variables. An
expression giving the refractive index, n, as a function of the density,
p0, and one constant is the Lorenz-Lorentz formula:

The quantity P(A) is called the specific refraction; it is related to the
molecular polarizability and is a function of the wavelength of the light
used in measuring the refractive index. If the environment of each
water molecule were either random or had cubic symmetry (so that the
field acting on a molecule is the Lorentz field, {(w2+2)/3}J37, where E is
the external field), then

where N is Avogadro's number, M is the molecular weight, and a is the
molecular polarizability. Normally one would expect the polarizability
to be a molecular property so that P(X) would be independent of the
temperature and the pressure. For water it is found that P(A) does vary
slightly with both of these variables : it decreases as the temperature
rises (from 0-206254 at 0 °C to 0-205919 at 60 °C for the Na D-line;
Tilton and Taylor 1938), and it also decreases with increasing pressure
(by about 0-5 per cent on raising the pressure to 1100 bars; Waxier et al.
1 964) . This variation of P(A) presumably reflects the absence of conditions
leading to the Lorentz field in water and possibly also a variation in the
polarizability of the water molecule with density and temperature.

Recently H. Eisenberg (1965) found a slightly more complex expres-
sion that describes the temperature and pressure dependence of the
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refractive index of water with great accuracy. This expression is given by

where A, B, and C are empirical constants independent of temperature
and pressure. By differentiating this equation, it is found that B and C
are related to derivatives of f ( n ) and P-V-T properties:

Here yT is the coefficient of isothermal compressibility and j8 is the
coefficient of expansion. Equation (4.15) describes Tilton and Taylor's
(1938) refractive-index data correctly to within a few digits of the
seventh decimal place, using single values of A, B, and C for each
wavelength of light. It also describes the variation of n with pressure
observed by Waxier et al. (1964); these observations extend only to
pressures of 1100 bars, however. The constant B that gives the best
fit of eqn (4.15) to experimental refractive-index data is equal to the
value of B calculated directly from eqn (4.15 a), using the experimental
values of (8nl8P)T, yT, and 0. For the Na D-line, A = 0-2064709,
B = 0-88538, and C = 6-2037 X 1Q-5.

The physical significance of the constant C was discussed by Reisler
and H. Eisenberg (1965) and by H. Eisenberg (1965). They found that
the refractive indices of methanol and benzene are adequately described
by eqn (4.15) when C is set equal to zero. They concluded that C
'expresses the deviation in the behaviour of such liquids as H20 and
D20 from "normal" behaviour'. A non-zero value of C, they suggested,
may reflect a change with temperature of either the concentration of
'ice-like' structures or the average polarizability of water molecules.

Refractive index at infra-red frequencies
Liquid water has several strong absorption bands in the infra-red region

of the spectrum (Section 4.7). It is well known (for example, Bottcher
1952, and Kauzmann 1957) that the refractive index of a substance in
the vicinity of an absorption band depends strongly on the frequency of
radiation. As the frequency is decreased through the region of the
absorption band, the refractive index first decreases, then increases
sharply, then decreases again (see Fig. 4.18). It is certain that the
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refractive index of water for infra-red radiation exhibits a number of
these dispersions, but very little is known about them.

Kislovskii (1959) calculated the refractive index of water as a function
of frequency in the infra-red region from the scant absorption, reflection,

FIG. 4.18. The refractive index, n, of liquid water in the infra-red region of the
spectrum. Redrawn from Kislovskii (1959).

and dispersion data available prior to 1959, and from a model for the
absorbing system. His model treats an absorption as a forced vibration
of a damped harmonic oscillator. His results are shown in Fig. 4.18.
The four prominent absorption bands in the figure correspond roughly
to the VB, vz, VL, and VT bands that are discussed in Section 4.7. The
visible region is off to the left of the figure: it can be seen that the refrac-
tive index at the shortest wavelength shown is near to the value 1-33
found for visible light. One dispersion region is present for each of the
four absorption bands. At the longest wavelength shown, the refractive
index is 2-04, roughly the square root of the high-frequency dielectric
constant (Section 4.6 (a)).

(b) Light scattering

When a layer of pure water is irradiated with a beam of monochromatic
visible light, most of the light is either transmitted through the layer or
reflected from the surfaces of the layer, but a fraction of the light is
scattered in other directions. The conventional measure of the light
scattered in a direction that forms an angle 6 with the incident beam is
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the Rayleigh ratio, Ru(0), given by

where Ig is the intensity of light scattered by a unit volume of the sample
at the angle 9, /„ is the intensity of the incident beam passing through the
sample, and d is the distance between the sample and the point at which
Ig is measured. The subscript u signifies that the incident light is
unpolarized. We should note that a very small fraction of scattered
light differs in frequency from the incident beam. This is the pheno-
menon of Raman scattering, which we shall discuss in Section 4.7; in
the present section we are concerned only with Rayleigh scattering, that
is, with scattered light having the same frequency as the incident
beam.-)-

The scattering of light by liquids arises from two distinct effects:
(1) The incident beam induces oscillating dipole moments in the

molecules, and the oscillating dipoles act as sources of secondary light
waves. These scattered waves have the same frequency as the incident
beam. If the molecules were regularly arranged, as in a crystal, the
scattered waves from different molecules would interfere destructively
with one another, and scattered light would be visible only at a few
angles of observation. Owing to the fluctuations in density in the liquid
that accompany thermal motions, however, different numbers of mole-
cules are simultaneously present in the adjacent volume elements of a
liquid, so that destructive interference is incomplete. Smoluchowski
and Einstein considered the effect of these inhomogeneities on light
scattering and found that they contribute a factor to the Rayleigh ratio
given by

where A is the wavelength of incident light, n is the refractive index for
wavelength A, yT is the isothermal compressibility, and the other
symbols have their usual significance. The quantity J?^°(90) is some-
times called the isotropic Rayleigh ratio. It refers, of course, to light
scattered at an angle of 90° to the incident beam.

f When a beam of Rayleigh scattered light is examined with a high-resolution
spectroscope, it is found to consist of three lines, one line exactly at the frequency of the
incident beam, and two stronger lines displaced symmetrically on either side of the
incident beam. For water at 20 °C this displacement is only 0'147 cm"1 (Cummins and
Gammon 1966). This small displacement arises from the Doppler shift of the scattered
light that is reflected from sound waves in the liquid (see, for example, Oster 1948 and
Cummins and Gammon 1966).

J See Kauzmann (1957) for a derivation of this equation.
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(2) The anistropy of polarizability of molecules causes some additional
scattering. Cabannes showed that this contribution can be experimen-
tally determined from the depolarization ratio, pu. This quantity is the
ratio of intensities of the horizontally polarized component and the
vertically polarized component in the beam that is scattered in the 90°
direction. The Cabannes factor, /, which describes the additional
scattering, is given by

The total Rayleigh ratio for light scattered at an angle of 90° to the
incident beam is thus

Several investigators have directly measured -Ru(90) and pu for water;
some of the more recent determinations are shown in the second column
of Table 4.4. Accurate measurements of -Ru(90) are difficult. Small
amounts of dust or fluorescent material in the sample or stray light in
the instrument can cause significant overestimation of -Ru(90) (see
Kratohvil et al. 1965 and Cohen and H. Eisenberg 1965 for discussion
of these problems); thus the smaller values of _RU(90) in Table 4.4 are
probably more accurate. Values of .Ru(90) and pu for D20 at 25 °C are
also shown in Table 4.4. These were determined by Cohen and H.
Eisenberg, who also measured Ru(6) as a function of d and temperature
for both H20 and D20.

The Rayleigh ratio can be calculated from eqn (4.19) using experi-
mental values for both pu and the quantities appearing in eqn (4.17).
Several such calculations are shown in the third column of Table 4.4.
Note that the calculated values of Cohen and H. Eisenberg (1965) are
within 4 per cent of their experimental values.

Interpretation of light-scattering measurements
Most investigators now agree that the Rayleigh ratio contains no

direct information on the V-structure of liquid water. The opposite view
was put forward by Mysels (1964), who maintained that the difference
between the experimental and calculated Rayleigh ratios reflects the
extent of structural heterogeneities in the V-structure of a liquid. Let
us consider Mysels's proposal and then some criticisms to which it has
been subjected.

According to Mysels, the observed Rayleigh ratio has two additive
contributions. In his view, 'one of these contributions is made by
fluctuations in density caused by pressure variations due to thermal



TABLE 4.4

Light scattering of water: values for the Rayleigh ratio, J?u(90), and for the depolarization ratio, p^

Authors

Kraut and Dandliker (1955)
Mysels (1964)
Kratohvil et al. (1965)

'Technique C'
Best estimate

Cohen and H. Eisenberg (1965)
H2O
D20

-Ru(90) experimental
(10-« om-i)
A = 436 m^i A = 546 m/i

2-89

2-45
< 2-6

2-32
2-30

1-05

1-08
< 1-0

0-865
0-843

.Ru(90) calculated^
(10-" cm-1)
A = 436 m/t A = 546 m^

2-59§

2-42||
2-32||

0-932

0-987§

0-8851J
0-848H

pu experimental

A = 436 m/i A = 546 m^

0-083

0-100 0-116

~ 0-108

0-087 0-076
0-090 0-079

f All values are for 25 °C and unpolarized incident light; values are for H2O except where noted.
j Calculated from eqns (4.17), (4.18), and (4.19), using the corresponding experimental value of pu in the last column. Mysels (1964) takes

pu = 0-083.
§ The authors noted that if pu is taken as 0-06 instead, then jffu(90) = 2-33 and 0-885 for A = 436 nift and A = 546 m^u. respectively.
|| Derived by the present authors from data in original paper.
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agitation, the other is made by local differences in structure which occur
independently of pressure variations'. Mysels stated that only the
former contribution is accounted for by eqn (4.19). Thus the difference
between the observed Rayleigh ratio and the Eayleigh ratio calculated
by eqn (4.19) is the contribution arising from local differences in struc-
ture. In applying this idea to water, Mysels chose Kraut and Dandliker 's
(1955) experimental value of 1-05 x 1Q-6 cm-1 for -Ru(90) at 546 HI/*,
and he calculated a value of 0-932 x 10~6 cm-1 for .flu(90). He then
compared the difference of these two quantities to the Rayleigh ratio
that might be expected from the structural heterogeneities associated
with various models for the V-structure of water. Mysels found that
structural heterogeneities in the interstitial model of Prank and Quist
(1961) are small enough to be consistent with this difference, but that
those in the mixture model of Nemethy and Scheraga (1962) are too
pronounced to be consistent with the difference. He concluded that
models involving 'compact icebergs of many water molecules or any
large proportion of randomly distributed holes of molecular dimensions'
are probably inconsistent with light-scattering measurements.

Kratohvil et al. (1965) and Cohen and H. Eisenberg (1965) criticized
Mysels's (1964) interpretation of light-scattering data. They noted
that the bulk properties such as yT and (8n[dP)T that appear in the
Smoluchowski-Einstein expression for the isotropic Rayleigh ratio
(eqn (4.17)) are characteristic of the liquid as a whole; these bulk
properties reflect all microscopic density fluctuations that occur in the
liquid. Thus, if the Smoluchowski-Einstein expression is applicable to
water, eqn (4.19) should account completely for the light scattering of
water. This means that light-scattering measurements can give no direct
information on the V-structure of a liquid in the way that Mysels sug-
gested. One could, of course, using a suitable statistical mechanical
theory, compute the isotropic Rayleigh ratio associated with a given
model for the V-structure of a liquid. Such a calculation, however,
would be equivalent to a calculation of yT and the other bulk properties
that appear in eqn (4.17). It appears, therefore, that measurements of
the angular distribution of scattered light provide no information on
the structure of water beyond that given by bulk properties such as yT.

Kratohvil et al. (1965) and Cohen and H. Eisenberg (1965) also noted
that the most accurate experimental determinations of _RU(90) for water
are in good agreement with values calculated from eqn (4.19) (see Table
4.4). This indicates that the Smoluchowski-Einstein expression is
indeed applicable to water.
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4.6. Properties depending on the rates of molecular displace-
ments

The properties of water that differ greatly from those of ice nearly all
involve the rates of molecular displacements. Whereas the values of
the volume, entropy, compressibility, heat capacity, static dielectric
constant, and vibrational frequencies for water differ by at most a factor
of 2 from the corresponding values for ice at 0 °C, the viscosity of water
is about 10~14 times that of ice, and the dielectric relaxation time is
about 10~6 times that of ice. Viscosity and dielectric relaxation time (like
ultrasonic absorption, relaxation time for nuclear magnetization, and
rate of self-diffusion) are properties that are determined by the rates of
molecular reorientation and translation. Indeed, the most obvious
difference between ice and water—the solidity of ice and the fluidity of
water—arises entirely from the different rates of molecular movements
in the two phases.

Investigations of the dielectric relaxation time and the other rate
properties just mentioned have provided fairly accurate values for the
rates of molecular reorientation and translation in liquid water. The
general method in such studies is to apply a stress to liquid water and
to measure the time required for the liquid to come into equilibrium
with the stress; alternatively, the stress is removed and the time re-
quired for the liquid to return to equilibrium is measured. For dielectric
relaxation the stress is an applied electric field, for self-diffusion it is a
gradient in the concentration of an isotope, for viscosity it is a shearing
stress, and so forth. Studies of the rate properties of water have not,
however, produced a detailed picture of the movements of water
molecules, and it seems likely that before we obtain such a picture it will
be necessary to await further developments in the fundamental theory
of non-equilibrium processes.

A recurring concept in the following sections is that of a correlation
time. Roughly speaking, this is the average period of time for which
some property of a molecule—say its orientation in space—persists with
little or no change. Correlation times can be more rigorously defined in
terms of correlation functions; let us consider the correlation function
for dielectric polarization as an example. This is a function of time, t,
given by (Glarum 1960):

where tn and tn* have the same significance as in Section 3.4 (a), and
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the brackets denote an average in the absence of an external field.
Clearly, at any arbitrary zero of time, C(t) = I . It is also clear that as
time goes on and the molecule whose moment is m changes its orienta-
tion in space, C(t) approaches zero. The simplest functional form which
C(t) may assume is

The quantity rrd in this equation is the rotational correlation time, the
subscript d denoting that it is determined from dielectric relaxation
measurements. Under other circumstances, C(t) has the more complex
form

and the time development of C(t) cannot be precisely described by a
single correlation time.

(a) Dielectric relaxation
The study of molecular reorientation in ice by means of dielectric

relaxation measurements was described in Section 3.4 (6); this technique
is also useful in studying reorientation in liquid water. For liquid water,
as for ice, the dielectric constant falls to a small high-frequency value
€3, as the frequency of the applied field is increased. For both phases this
decrease in dielectric constant with increasing frequency, called the
Debye dispersion, is described reasonably well by a single relaxation
time rd for every temperature. The chief difference in the behaviour of
ice and water is that the relaxation time for water is six powers of ten
smaller than that of ice; this shows, of course, that H20 molecules
reorient much more frequently in water than in ice. The mechanism of
molecular reorientation in water cannot be deduced from the relaxation
data, though the data are sufficient to suggest some characteristics of
the mechanism and to rule out some proposed mechanisms altogether.

Studies of the dielectric relaxation of water are summarized in Table
4.5. Collie et al. (1948) found that for each temperature they considered,
the data may be described by the Debye equation (eqn (3.10)), with a
single relaxation time and a value of 5-5 for the high-frequency dielectric
constant €„. They found that the dielectric relaxation time Td decreases
from 17-8 X 10~12 s at 0 °C to 3-22 X 1C)-12 s at 75 °C. The value of TA for
D20 is greater than that of H20 by a factor which decreases from 1-3
at 10 °C to 1-2 at 60 °C.

In another study, Grant et al. (1957) found that the data are better
described by a very small spread of relaxation times and a value of
4-5 for e^. The reader will recall from Section 3.4 (6) that the deviation



TABLE 4.5

Dielectric relaxation of water: values for the relaxation time, Ta, the high-frequency dielectric constant, e^, the enthalpy of
activation, AJ?* the entropy of activation, A${, and the dispersion parameter for the spread of relaxation times, a

Authors

Collie et al. (1948)

Grant et al. (1957)

Rampolla et al. (1959)
Garg and Smyth (1965)

Water in dilute benzene solution

Temperature
(°C)

0
5

10

20

30

40

50

60

75

20

20

20

Td(in
H2O

17-8

12-7

9-55

7-37

5-94

4-84

4-04

3-22

9-26

10-0

1-0

units of 10~12 s)t
D20

20-4
16-6

12-3

9-34

7-21

5-89

4-90

AH* (kcal/mol)t
H2O

4-5

. 4-2 . . . .

. 4 - 0 . . . .

3-5 . . . .

3-5 . . . .

3-2 . . . .

2-8 . . . .

AS* (cal/mol/°C)t eM a
H2O

5-5 0
7-4

6-1

5-4

4-0

4-0

3-0

1-8

4-5 0-02
^0-007

6-0

f Calculated from values of the relaxation wavelength, As, reported in original papers, using the relationship T^ = Aa/(27rc'), where
c' = 2-998xlO10 cms-1.

} The values of AS* and A<S* are averages over the temperature interval which straddles the entry.
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from zero of the dispersion parameter a is a measure of the spread of
relaxation times. Grant et al. found a = 0-020^0-007. These authors
noted that available data are insufficient to show whether or not ex is
dependent on temperature. Rampolla et al. (1959), in a third study,
obtained 10-0 X 10~12 for TA at 20 °C and 6-0 for 6oo.

A value for rd for water in dilute benzene solution was reported by
Garg and Smyth (1965); it is 1-0 X 1Q-12 s at 20 °C, about one-tenth of Ta

for liquid water at the same temperature.

Interpretation of dielectric relaxation data
In analysing the dielectric relaxation data for water, let us consider

the magnitude and temperature dependence of Td first, then the spread
of relaxation times, then the origin of the high-frequency dielectric
constant, and finally possible mechanisms for reorientation of water
molecules.

In our discussion of the dielectric relaxation time Ta, it should be kept
in mind that this quantity is a measure of the rate of decay of macro-
scopic polarization when the applied field is removed (Section 3.4(6)).
It is somewhat longer than the rotational correlation time, Trd, which
is the interval between molecular reorientations. According to Powles
(1953) and Glarum (1960),

where e0 is the static dielectric constant.
A question we must consider is why the dielectric relaxation time of

water is so much shorter than that of ice. The transition-state theory for
dielectric relaxation (Glasstone et al. 1941, Kauzmann 1942) is of some
help here. According to the transition-state theory, the relaxation time
is given by

where AC?1, AiT*, and A/S* are, respectively, the free energy, the enthalpy,
and the entropy of activation for dielectric relaxation. The values of

•f The quantities AG*, AH*, and A.S* refer to molecular processes, and should therefore
be calculated from rT^ rather than from T$. Most investigators have calculated these
quantities from ra, however, and we do the same here for consistency. It should be
noted, though, that if rra were used instead of ra, AiS* would be more positive by about
0-8 cal/mol/°C.
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A//1 and A*Sn for water are easily determined from the temperature
dependence of rd; they are shown in Table 4.5. Let us compare A/7*
and A$* for water at 5 °C to the corresponding quantities for ice at
0 °C (based on the data of Auty and Cole (1952), A#* = 12-7 kcal/mol
and AS* = 9-6 cal/mol/°C for ice I at 0 °C). The values of A£* for the
two phases are not very different near 0 °C, but AH* for ice is 8 kcal/mol
larger than AH1 for water. Evidently the relaxation time of water is
shorter than that of ice primarily because the enthalpy of activation is
smaller in water.

The Debye dispersion of water, as mentioned above, can be described
by a small spread of relaxation times. The dispersion parameter a for
water (0-02) is close to the value of zero that is observed for a single
relaxation time, and less than the values for ice III (a = 0-04) and ice VI
(a = 0-05). The non-zero values of a for several of the ice polymorphs
have been attributed to the presence of several different molecular
environments in each of these crystals (Wilson et al. 1965). Since mole-
cular environments are certainly more varied in liquid water than in any
of the ices, the very small spread of relaxation times in water is a pheno-
menon that is difficult to explain.

One possible explanation is that molecular reorientation in water is a
co-operative process involving a large number of molecules. In this case,
variations in the environments of individual molecules would not affect
the relaxation time. Such a process was invoked by Denney and Cole
(1955) to explain their observation that mixtures of methanol and n-
propanol exhibit a single principal relaxation time although the pure
liquids have quite different relaxation times. For the case of water,
however, AH* and A$* seem too small for a process that disrupts large
regions of the liquid; we shall discuss this below.

A second possible explanation is that, although molecular environ-
ments are varied in water when viewed over a time scale of 10~13 s
(Section 4.7 (6)), they are relatively uniform when viewed over an
interval of •—> 5 X 10~12 s. A small spread of relaxation times would be
consistent with such an averaging of molecular environments. It is
difficult to imagine, however, what molecular motion might account
for such an averaging.

Let us now consider the origin of the high-frequency dielectric con-
stant. From data in Table 4.5 it is apparent that €„ lies within the range
4-5-6-0. This may or may not be larger than the square of the refractive
index in the far infra-red region of the spectrum (Section 4.5 (a)); it
is certainly larger than the square of the refractive index at optical

855339 P
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frequencies—about 1-7. It is also somewhat larger than the value 3-1
for Coo of ice I (Section 3.4(6)).

Two explanations for the relatively large value of ex have been put
forward. Haggis et al. (1952) and Hasted (1961) suggested that e^ for
liquid water is larger than €„ for ice because of the rotations of those
molecules in the liquid that form zero and one hydrogen bond, and also
because of rotations of 'unsymmetrical two-bonded molecules'. These
are molecules having one 0-H bond and one lone-pair of electrons
engaged in hydrogen bonds. According to these authors, at high
frequencies of the applied field, the three- and four-bonded molecules
do not reorient fast enough to come into equilibrium with the field, and it
is only zero-, one-, and unsymmetrical two-bonded molecules that
contribute to the dielectric constant.

The large ex may, however, arise entirely from the dispersions associa-
ted with hindered translational and librational modes of vibration in the
liquid. The difference e^—n2 for ice, where n is the optical refractive
index, is attributable to these dispersions (Section 3.4 (6)). Magat (1948)
suggested that librations of water molecules account for the difference
e^—n2 and gave a qualitative explanation for this effect: in the absence
of an applied field, water molecules exhibit hindered rotations about a
position of minimum potential energy. Magat noted that when a field is
applied, the librations are biased in the direction of the field and this
produces a small polarization in the liquid. Such a mechanism would be
expected to give rise to a larger value of e^—n2 in the liquid than in ice
because hydrogen bonds are more easily distorted in the liquid (Section
4.7 (c)), and hence the polarization caused by the applied field would be
larger.

Available data do not favour one of these explanations over the other;
when measurements of the dielectric constant or absorption coefficients
at higher frequencies become feasible, however, it should be possible to
choose between them. The zero-bonded and one-bonded molecules
would certainly have relaxation times as long as, or longer than, the
1 -0 X 10~12 s relaxation time observed for water in dilute benzene solution
(Table 4.5). In contrast, the hindered translational and librational
motions of water molecules have absorption bands near 200 and 700
cm-1, so they must produce a dispersion of the dielectric constant at
frequencies around 1013 s"1 (Section 4.7 (c)). Thus it should be possible
to distinguish between the two mechanisms once the dielectric or
absorption behaviour is determined quantitatively for the frequency
range 1012 to 1013 s-1.



FIG. 4.19. Possible mechanisms for molecular reorientation in liquid water.
Oxygen atoms are shown by circles and O— H bonds by lines. A black dot in
the centre of an oxygen atom represents an O— H bond that extends above or
below the page, (a) A representation of the 'flickering cluster' mechanism of
Frank and Wen (1957). (6) A mechanism involving orientational defects like
those thought to exist in ice. Small arrows show the direction in which a
molecule is about to rotate, (c) Reorientation by rotation of small polymeric

groups of water molecules, (d) Reorientation of interstitial molecules.
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Possible mechanisms for reorientation of water molecules
Fig. 4.19 shows four possible mechanisms for the reorientation of

molecules in liquid water. These drawings are highly schematic: they
are not presented as serious representations of molecular arrangements
in the liquid but rather as aids in developing a qualitative picture of
molecular reorientation.

Panel (a) is an attempt to depict the 'flickering cluster' mechanism
proposed by Frankand Wen (1957). They postulated 'that the formation
of hydrogen bonds in water is predominantly a co-operative phenomenon,
so that, in most cases, when one bond breaks, then, typically, a whole
cluster will ' 'dissolve ' ' . This gives a pi cture of flickering clusters of various
sizes and shapes, jumping to attention, so to speak, and then relaxing "at
ease".' A hydrogen-bonded cluster, shown on the left, dissolves into a
chaotic group of non-hydrogen-bonded molecules (centre), and these
coalesce to form a new cluster with the molecules oriented differently
from the original cluster. In the presence of an external electric field,
molecules would tend to form clusters with their dipole moments oriented
in the direction of the field. Frank and Wen believe that the dielectric
relaxation time is a measure of the half-life of a cluster.

Consideration of the 'flickering cluster' mechanism in terms of the
transition-state theory indicates that the postulated dissolution of
clusters would require larger values of A$* and A# * than those which are
actually observed. The dissolution of a cluster, as described by Frank
and Wen, seems to correspond to a 'vaporization' of molecules in a local
region of the liquid. Now Kauzmann (1942) pointed out that if the
process of activation is pictured as a local vaporization, the ratio of A$* to
the molar entropy of vaporization should be approximately equal to the
number of molecules involved in the activation. The entropy which we
require for comparison with A$* is the entropy of vaporization of liquid
water to water vapour occupying a volume equal to the 'free volume' of
the liquid. This quantity is given by

where A$vap is the observed entropy of vaporization, Fvap is the molar
volume of water vapour at its equilibrium vapour pressure, and Vf is
the free volume of liquid water. If we accept Nemethy and Scheraga's
(1962) estimate of Vt (= 0-26 cm3 mol-1), we find that the ratio A#YAS;ap

decreases from 1-1 at 5 °C to 0-5 at 67-5 °C. It should be pointed out that
Nemethy and Scheraga's value for Vt is very small, but larger values only
serve to decrease our estimate of the number of molecules involved in
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the activation process. Hence this calculation suggests that the re-
orientation of a water molecule does not involve the movement of a large
number of neighbouring molecules by the simultaneous rupture of many
hydrogen bonds.

A similar estimate of the number of molecules in a dissolved cluster,
based this time on the observed value of A.ff^, also produces a number
that is too small to be consistent with the flickering-cluster mechanism.
The quantity A/?* is the enthalpy required to produce one mole of the
activated complex, which in this case is one mole of 'dissolved clusters'.
It we suppose that there are n water molecules in a dissolved cluster,
then at least 2nN hydrogen bonds must be broken in producing a mole
of the activated complex. To estimate A.H* we must assume some value
for the energy of a hydrogen bond in liquid water. Let us take the value
of 1-3 kcal mol"1 recommended by Nemethy and Scheraga (1962); this
is the smallest of the values listed in Table 4.2. Thus AJf7J is at least
2-Qn kcal mol"1. Recalling that the observed A.ffl is 4-5 kcal mol"1 at
5 °C and decreases as the temperature rises, we see that n, the number
of molecules in a flickering cluster, is less than 4-5/2-6 = 1-7 at 5 °C and
decreases at higher temperatures. Thus if the dissolution of the clusters
is considered to be a local vaporization and if the dissolved regions are
considered to contain more than one or two molecules, the observed
values for both AH* and A$l are inconsistent with the flickering-cluster
mechanism.

Panel (6) of Fig. 4.19 shows a mechanism for reorientation involving
orientational defects similar to those believed to exist in ice. An irregular
hydrogen-bonded network having all hydrogen bonds intact is shown on
the left-hand side of the panel. Several molecules, those forming
particularly distorted hydrogen bonds with their neighbours, break some
of the bonds and rotate, thereby producing orientational defects similar
to the D- and L-defects discussed in Section 3.4 (6). Subsequent rotation
of molecules adjacent to defects causes the defects to migrate through
the liquid. An external electric field would influence the migration of the
defects and thus induce an orientational polarization in the liquid. The
observed values of AS* and A#* do not seem to be inconsistent with this
mechanism: A$* at 5 °C is slightly less than AS1 for ice I at 0 °C, which
is reasonable if the mechanisms in the two phases are similar. The drop
in A-H"* of ~ 8 kcal mol"1 in going from ice at 0 °C to water at 5 °C could
conceivably be associated with weaker hydrogen bonding in the liquid.
It is not clear that this mechanism would give rise to a narrow spread
of relaxation times.
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A somewhat similar interpretation of dielectric relaxation data was
given by Haggis et al. (1952). The reader will recall (from Section 4.4 (a))
that these authors treated water as an equilibrium mixture of molecules
that form 4, 3, 2, 1, and 0 hydrogen bonds. In their discussion of di-
electric relaxation, they did not specify the geometric arrangement of
molecules near a rotating molecule except to say that the rotating mole-
cules are those that form only two intact hydrogen bonds to neigh-
bouring molecules. The rate-limiting step in molecular reorientation,
according to these authors, is the formation of two-bonded molecules
from three- and four-bonded molecules; the two-bonded molecules
rotate more quickly than they are formed.

Panels (c) and (d) show two other conceivable mechanisms for mole-
cular reorientation in water. Panel (c) depicts water as a mixture of small
polymeric units. This mechanism is almost certainly incorrect; if water
were composed of small polymeric units of various sizes which cohere
for as long as 10-11 s, the rotations of these units would produce a wide
distribution of relaxation times. Yet a very narrow distribution is
actually observed. Panel (d) depicts water as a cage structure with
interstitial molecules (Section 4.2 (6)) that are free to undergo rotations.
It seems likely that the reorientations of molecules forming the cage
would be less frequent than those of the interstitial molecules, and
consequently that this structure would give two distinct dispersion
regions.

(6) Belaxation of nuclear magnetism
As mentioned in Section 4.4 (6), each proton in an applied magnetic

field occupies one of two energy levels, depending on whether a com-
ponent of its magnetic moment points in the direction of the field or in
the opposite direction. If the magnetic field strength is suddenly in-
creased, more nuclear magnets align themselves with the field, but a
period of time is required for the system to reach equilibrium. The time
needed to achieve equilibrium along the field axis is called the spin-lattice
relaxation time and is denoted Tr This time can be measured by tech-
niques of nuclear magnetic resonance. It is closely related to molecular
motions, because a change in the orientation of a nuclear magnet can be
induced only by a fluctuation in the magnetic field acting on the nucleus,
or, in the case of a nucleus with an electric quadrupole moment, by a
fluctuation in the electric field gradient at the nucleus; these fluctuations
are caused by rotations and translations of the molecule containing the
nucleus.



TABLE 4.6

Studies of nuclear spin-lattice relaxation times of water

Authors (and tempera-
ture range of study)

Krynicki (1966)
(2-1-95-2 °C)

Smith and Powles (1966)
(0-374 °C)

Woessner (1964)
(5-100 °C)

Powles et al. (1966)
(0-374 °C)

Glasel (1966)
(3-65 °C)

Type of nuclear
relaxation studied

Proton

Proton

Deuteron

Deuteron

Oxygen- 17

Temperature
(°C)

0
30
50
75

25
280
374

25

Value of Tm, the rotational
correlation time (units of 10~12 s)

4-8f
2-0
1-3
0-9

2-6
0-156
0-0756

2-7

Other quantities measured and comments

The temperature dependence of T\ can-
not be described by a single value of the
activation energy E&, but the mean
value of EA between 40 and 100 °C is
3-7 kcal/mol.
The correlation time for molecular angular
velocity, rsr, is roughly 2-87 X 10~15 s at
280 °C and 5-06 x 10~15 s at 374 °C.
The temperature dependence of Tj above
40 °C can be described by an activation
energy E^_ of 3-90 kcal/mol.
Results agree with those of Woessner
from 0 to 100 °C.
In deriving Tm, the quadrupole coupling
constant of 17O in the liquid is assumed to
be equal to the value in the free molecule.
The activation energy is constant from
4 to 30 °C but shows a distinct break at
30 °C.

Values estimated from a graph in the original paper.
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Spin-lattice relaxation times for water have been measured for the
proton, the deuteron, and the oxygen-17 nucleus (Table 4.6), and the
method of extracting information about molecular motions depends on
which type of nucleus is studied. Let us consider the proton first. The
magnetic moment of a proton changes direction when it experiences a
fluctuating magnetic field. Such fluctuations may arise from motions of
the other proton in the same water molecule and also from protons in
neighbouring water molecules. The reciprocal of the observed Tv may
be expressed as

where the first two terms on the right-hand side represent contributions
from the two effects just mentioned. The third term is called the spin-
rotational contribution; it represents the effect of fluctuating magnetic
fields that arise from the electric charges of rotating molecules, and is
significant only at temperatures above 100 °C. The term (l/7i)intra ig

proportional to a rotational correlation time, if the correlation function
that describes molecular reorientation has the form of a simple exponen-
tial decay (eqn (4.20); see, for example, Glasel 1967). Let us call this
correlation time rm to indicate that it is the rotational correlation time
determined from nuclear magnetic resonance. Thus to determine Trn,
TI must be measured, the contributions (l/Ti^ter an(i (l/^i)s-r must be
evaluated, and these contributions must be subtracted from (1/7^ to
obtain (l/yi)intra- Methods of evaluating (l/^Dinter and (V^Ds-r f°r

water have been proposed by Krynicki (1966), Smith and Powles (1966),
and Powles et al. (1966).

Krynicki (1966) measured the proton spin-lattice relaxation time of
water from 2-1 to 95-2 °C with an estimated experimental error of ± 2 per
cent. He found that the temperature dependence of T± parallels that of
the reciprocal of the dielectric relaxation time: the product (^r^"1

equals 3-37 x 1010 s~2 to within ±3 per cent over the temperature range
where data were available. Eliminating the intermolecular contribution
to Tit Krynicki determined rm as a function of temperature; the values
are listed in Table 4.6. Krynicki noted that the ratio of the dielectric
relaxation time, TA, to rrn is nearly independent of temperature from 0
to 75 °C and is equal to about 3-7. He interpreted this result in terms of
a mechanism for reorientation of water molecules by jumps through
small angles.

Smith and Powles (1966) measured T± of water under its own vapour
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pressure from the freezing-point to the critical temperature. They
derived the approximate values of rrn that are given in Table 4.6.
Treating the reorientation of water molecules as a Brownian rotational
diffusion, they estimated values of the correlation time rsrfor molecular
angular velocity (see Table 4.6); this is the time interval for which the
angular velocity of a water molecule remains roughly unchanged. From
the value of TBT at the critical point they estimated that the average angle
of jump during reorientation is roughly 10°. They emphasized, however,
that if reorientation proceeds by a 'jump and wait' mechanism, the
average angle of jump is larger. The two possibilities cannot be dis-
tinguished by their measurements.

The deuteron and 17O nuclei have electric quadrupole moments, and
thus they change orientations when they experience a fluctuating electric
field gradient. Such fluctuations arise primarily from charges in the same
molecule as the nucleus under question, so that elimination of inter-
molecular effects is not necessary in these studies. For these nuclei, the
reciprocal of 2\ has the form

where A is a numerical constant and C represents the quadrupole
coupling constant of the nucleus. Thus to determine Trn, C must be
known; but this quantity for the water molecule in the liquid state is not
available from other sources. Glasel (1966), in his determination of the
rotational correlation time in liquid water enriched with H2

170, bypassed
this problem by assuming that the quadrupole coupling constant of 170
is the same in the vapour and liquid phases. Woessner (1964) reversed
this procedure in studying liquid D20; he estimated the rotational
correlation time from the dielectric relaxation time and then used this
quantity to determine the quadrupole coupling constant of the deuteron
in the liquid. He found it to be only | to f as large as in the free D
molecule, but roughly the same magnitude as in D20 ice. Powles et al.
(1966) obtained a similar value of the quadrupole coupling constant by
comparing 2\ values for liquid H20 and D20. They concluded from this
result that hydrogen bonding in water is virtually complete at all
temperatures up to 300 °C.

(c) Self-diffusion(
The molecules of a liquid experience frequent displacements from their

temporary positions of equilibrium. The self-diffusion coefficient, D, is
a measure of the rate of such displacements. One method of determining
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D is to study the rate of diffusion of an isotopic tracer in the liquid; I)
for the tracer is then given by Pick's second law:

where x is the direction of diffusion and dcjdt is the rate of change of
tracer concentration with time. The rate of molecular displacements can
also be studied without the aid of isotopic tracers by NMR and neutron
scattering techniques.

TABLE 4.7

Values for the self-diffusion coefficient, D, of water

(a) Comparison of values of D, for 25 °C and atmospheric pressure, determined by
various techniques

Investigators

Trappeniers et al. (1965)
Jones et al. (1965)

Wang (1965)
Longsworth (1960)

Simpson and Carr (1958)
WangeiaZ. (1953)

Experimental technique

NMR spin-echo measurements
HTO tracer in continually monitored
capillary tube
H2

18O tracer in capillary tube
Interferometric detection of boundary
between H2O-D2O mixtures. By extra-
polation :

D for pure H2O
D for pure D2O

NMR free precession techniques
HDO tracer in capillary tube
HTO tracer in capillary tube
H2

18O tracer in capillary tube

D
(10~5 cm2 s-1)

2-51±0-01
2-22±0-05

2-57±0-02

2-272±0-003
2-109±0-003
2-13
2-34±0-08
2-44±0-06
2-66±0-12

(b) Temperature dependence of D determined by the capillary-tube method using
H2

18O as the tracer

Reported by Wang (1965)
Temperature D (in units of
(° C) 10~6 cm2 s-1)

Reported by Wang et al. (1953)
Temperature D (in units of
(° C) 10-s cm2 s-1)

5-00
10-00
15-00
25-00

1-426±0-018
1-675±0-025
1-97±0-020
2-57±0-022

35-0
45-0
55-0

3-49±0-15
4-38±0-ll
5-45±0-30

Values of D for water, determined by several methods, are listed in
Table 4.7. It can be seen that these are in fair agreement with one
another. The discovery that HDO and HTO diffuse no faster than
H2

180 is especially interesting, because it shows, as noted by Wang et al.
(1953), that the special mechanism of rapid H+ transfer that accounts
for the electrolytic conduction of water (Section 4.6 (e)) plays a negligible
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part in the self-diffusion of water. Longsworth's values for the self-
diffusion coefficients of H2O and D2O indicate that molecular displace-
ments are slightly more frequent in H20 than in D20 at the same
temperature. This finding is consistent with the larger viscosity (Table
4.8) and longer dielectric relaxation time (Table 4.5) of D2O.

Studies of the temperature dependence of the self-diffusion coefficient
show that D can be described by the equation

Wang et al. (1953) found that over the temperature range 1-1-55 °C,
EA is 4-6±0-l kcal mol"1 for HDO and HTO tracers, and 4-4±0-3 kcal
mol"1 for an H2

180 tracer. Wang (1965) reported the results of another
study which showed that JSA is 4-8 kcal mol"1 for an H2

180 tracer over
the temperature range 5-25 °C. Some measurements of the pressure
dependence of D were made by Cuddeback et al. (1953).

Interpretation of self-diffusion coefficients
Wang et al. (1953) used the transition-state theory of rate processes

to interpret their measurements of the self-diffusion coefficients. They
noted that the energies of activation for self-diffusion, dielectric relaxa-
tion, and viscous flow of water are all about 4-6 kcal mol"1 at 25 °C. This
observation led them to assume that the mechanism of activation is the
same for these three processes. It follows from this assumption and from
the transition-state theory that

where A is the mean distance between two successive equilibrium posi-
tions of a diffusing water molecule in the direction of diffusion, ra is the
dielectric relaxation time, ^ is the viscosity, and C is a constant that
depends on intermolecular separations. Two observations lend support
to the validity of this relationship; the quantity Dr/IT is nearly in-
dependent of temperature from 0 to at least 55 °C (Wang et al. 1953,
Robinson and Stokes 1959), and the values of TAT/r] for H20 and D20
are nearly equal (Collie et al. 1948).

Two important inferences about the displacements of water molecules
have been based on eqns (4.24). The first is that A, the mean length of a
diffusive jump in the direction of diffusion, is roughly equal to the
separation of nearest neighbours in the liquid. Wang et al. evaluated A
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from eqn (4.24), using their own measurements of D and the values of
ra determined by Collie et al. (1948). They found that A is nearly constant
(= 1-5 A) over the temperature range 0-55 °C. Wang (1965) in a later
paper took Td to be larger by a factor of 2-n and thus arrived at a larger
value for A (= 3-7 A). The second inference from eqns (4.24) is that the
unit of the liquid that experiences changes in orientation and position is
a single molecule. According to Grant (1957), the magnitude of A2/<7 in
eqn (4.24 a) supports this idea. He noted that in the Debye equation
for rotational relaxation times, the quantity A2/(7 is replaced by 47ra3,
where a is the 'molecular radius'. He found that the experimental values
of the viscosity and dielectric relaxation time, when inserted in eqn
(4.24 a), give a = 1-4 A, a reasonable value for the water molecule. He
interpreted this result in terms of the ideas of Haggis et al. (1952) about
reorientation of water molecules in the liquid (Section 4.6 (a)).

Information on self-diffusion from scattering of slow neutrons
A technique that promises to be valuable for studying diffusional

motions in liquids is the scattering of slow neutrons.f Slow neutrons
travel much more slowly (•—- 105 cm s^1) than X-rays (3 X 1010 cm s"1) and
they interact with individual atoms in the liquid over a time interval
comparable to the period of molecular jumps. Thus the scattered
neutrons contain information on the diffusive motions of molecules. In
the case of water, this information is for the hydrogen nuclei, which are
the principal neutron scatterers.

One method of extracting this information is to analyse the quasi-
elastic scattering. The portion of the scattered beam that has exchanged
no energy with the lattice vibrations of the substance under investigation
is said to have been elastically scattered. For most liquids the spectrum
of neutron energies in the 'elastic' portion of the scattered beam is
actually somewhat broader than the spectrum in the incident beam, and
the scattering is said to be quasielastic. The observed broadening is
caused by diffusive motions of molecules.

Among the early investigations of neutron scattering from water was
that of Hughes et al. (1960). These authors observed no broadening
whatsoever in the elastic region, a result that is incompatible with
continuous diffusion of molecules. Singwi and Sjolander (1960) inter-
preted this finding in terms of a jump-and-wait model for diffusion. They
were able to fit the experimental results by supposing that a water

f This technique has been described briefly by Palevsky (1966) and at length by
Sjolander (1965). Larsson (1965) summarized studies of liquid water by this method.
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molecule oscillates about a position of temporary equilibrium for an
average of 4x 10~12 s at 20 °C before experiencing a diffusional jump.
This would mean that a water molecule executes roughly 40 inter-
molecular oscillations between two jumps. In several other experimental

FIG. 4.20. The mean square displacement of a proton in liquid water as a
function of time, (R®), according to Sakamoto et al. (1962). The points show
the experimental values and the lines show various calculated values. Redrawn

from Sakamoto et al. (1962).

studies (see Larsson 1965) some broadening of the elastic region was
observed. Larsson (1965) found he could fit his own data with the model
of Singwi and Sj Slander by assuming that the interval between diffusive
jumps is 1-5 X 10-12 s at 20 °C.

Additional support for a jump-and-wait mechanism of diffusion comes
from the inelastic-scattering studies of Sakamoto et al. (1962). These
authors performed a Fourier transform of their data to obtain the time
dependence of the mean square displacement of a proton, {R2}. Their
results for 25 and 75 °C are shown in Pig. 4.20. Also shown are the
calculated variations of (J?2) for continuous diffusion at the two tempera-
tures (based on the diffusion coefficients D = 2-13 X 10~5 cm2 s-1 at
25 °C and D = 6-27 X lO"5 cm2 s-1 at 75 °C) and the calculated (R2) for
a gas composed of molecules of mass 18 and of mass 1. Note that at
25 °C the experimental (.R2) is described adequately by continuous
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diffusion for times greater than ~ 3 X 10~12 s, but not for shorter times.
At 75 °C continuous diffusion seems to set in at about 10~12 s. Note also
that {R2) is about 4 A at the onset of continuous diffusion, roughly equal
to the square of the intermolecular separation in the liquid. Thus these
results support the conclusion of the studies of the quasielastic scattering
that, at moderate temperatures, water molecules remain near positions
of temporary equilibrium for relatively long periods of time before
experiencing diffusional displacements.

FIG. 4.21. The pressure dependence of the shear viscosity of water according
to Bett and Cappi (1965).

(d) Viscosity
The viscosity of a liquid is a measure of its resistance to flow. Since

flow takes place by displacements of the equilibrium positions of
molecules, studies of the viscosity can yield some information on the
nature of these displacements. The shear viscosities of liquid H2O and
D20 are given in Table 4.8. Heavy water is the more viscous liquid; its
viscosity exceeds that of HaO by a factor that decreases from 1-2 at
30 °C to 1-1 at 250 °C. The energy of activation for viscous flow of H20
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is also shown; this quantity is slightly larger than the energy of activa-
tion for dielectric relaxation at most temperatures.

With the exception of water, liquids become more viscous when
pressure is applied to them. The behaviour of water at temperatures
below about 30 °C is unique: the initial application of pressure causes the
viscosity to decrease. As greater pressure is applied, the viscosity passes
through a minimum and then increases. Fig. 4.21 shows that at 2-2 °C
the pressure of minimum viscosity is roughly 1500 kg cm~2. Increasing
the temperature decreases the pressure of minimum viscosity until, at
about 30 °C, the minimum disappears altogether. See Wonham (1967)
for a comparison of the results of several investigators on the pressure
dependence of the viscosity.

TABLE 4.8

Temperature dependence of the shear viscosity of water, ij, and the energy of
activation for viscous flow,^

Temperature
(°C)

0
5

10
20
30
40
45
50
60
70
75
80
90

100
125
150
175
200
225
250

Viscosity
H20{

1-787
1-516
1-306
1-002
0-7975
0-6531
0-5963
0-5467
0-4666
0-4049
0-3788
0-3554
0-3156
0-2829
0-2227
0-1863
0-1578
0-1362
0-1225
0-1127

(centipoise)
D20§

0-969

0-713

0-552

0-445

0-365
0-323
0-252
0-208
0-175
0-151
0-135
0-124

E%s for H2O
(kcal mol"1)

5-5||
4-8||
4-6||
4-2||

3-4tf

2-8ft

2-lft

t £!$* = R dOnijJ/da/T).
J The data for 0-100°C are those recommended by Stokes and Mills (1965) and

presumably refer to 1 atm pressure. Data for 125-250 °C are those of Jaumotte as
reported by Heiks et al. (1954) and presumably refer to the saturation pressure.

§ Data of Heiks et al. (1954) for 99-20 per cent D2O.
|[ Home et al. (1965) and Home and Johnson (1966). The values have been estimated

by the present authors from graphs in the original papers,
ff Ewell and Byring (1937).
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Pressure also affects the energy of activation for viscous flow, E™.
Home and Johnson (1966) and Home et al. (1965) found that E^s

increases with decreasing temperature for water at atmospheric pressure
down to at least — 0-5 °C. As pressure is applied, E™ decreases along
all isotherms between 0 and 20 °C. This decrease of E™ suggests that
compression facilitates molecular displacements, perhaps by weakening
or breaking hydrogen bonds.

A second form of viscosity is the volume (or compressional) viscosity.
This property cannot be measured with viscosimeters but can be
deduced from measurements of ultrasonic absorption and the value of
the shear viscosity (see, for example, Litovitz and Davis 1965). The
volume viscosity of water is roughly three times as large as the shear
viscosity, and accounts for the strong absorption of ultrasonic waves by
the liquid. Hall (1948) developed a theory of the volume viscosity in
terms of a two-state model for water; his theory has subsequently been
modified by several authors. Litovitz and Davis (1965) and Davis and
Jarzynski (1967—8) have reviewed this work.

(e) Ionic dissociation and migration
Ionic migration is another process occurring in pure water which

involves translational motions on the atomic level. We shall not discuss
this topic in detail, as the concentration of ions in pure water is too
small at room temperature to affect the structure of the liquid greatly.
Readers interested in a more extended discussion are referred to the
reviews of Eigen and De Maeyer (1958, 1959).

A small fraction of the molecules in pure water dissociates spontan-
eously to form H+ and OH" ions:

Here &D is the rate constant for dissociation and &R is the rate constant
for neutralization. The ratio of these quantities, ^H2o> *s the dissocia-
tion constant. Accurate determinations of -K^o nave been made by
measuring the e.m.f. of appropriate galvanic cells (Harned and Owen
1939); the resulting value of K^Q leads directly to the ionic concentra-
tions, and the temperature dependence of KHiO leads to the enthalpy
and entropy of dissociation (see Table 4.9).

Eigen and De Maeyer (1958) used a relaxation technique to determine
the values of &D and &R (Table 4.9). The neutralization reaction is
extremely fast: Eigen and De Maeyer noted that if a homogeneous
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mixture' of a one-normal-strong acid and a one-normal-strong base could
be prepared and then the reaction suddenly initiated, the reaction would
run nearly to completion in lO^11 s.

Considerable evidence, summarized by Eigen (1964), indicates that the
H+ and OH~ ions in water are strongly hydrated. The heat of hydration
of H+, for example, is about 276 kcal mol-1 at 25 °C, exceeding by over
100 kcal mol-1 that of any other univalent ion. This suggests that protons
in the liquid are strongly bound to water molecules, forming oxonium
(H3O

+) ions, or even larger complexes. Eigen and De Maeyer (1958;
Eigen 1964) believe that the HgOj ion is the most common of the
larger complexes. The evidence which they cite for the existence of this
ion includes mass spectroscopy, quantum-mechanical calculations, and
their interpretation of their own kinetic data (see below). These ions are
short-lived: Eigen (1964) estimated that the mean period of association
of a proton with a given water molecule, TH+, is roughly 10~12 s. We
can estimate the mean interval between two successive associations of
a given water molecule with a proton, TH!!O, by inserting Eigen's value
for TH+ into the relationship:

where the square brackets denote concentrations. This gives
TH2o ^ 5xlO~ 4 s. Apparently a water molecule experiences many
reorientations and translations between two successive associations
with a proton. Thus, although proton jumps in water are very rapid, the
concentration of jumping protons is small, and consequently the motion
of hydrogen atoms in the liquid is governed mainly by the rate of move-
ment of intact water molecules. As noted by Samoilov (1965), this result
is consistent with the nearly identical diffusion coefficients found for
deuterium and H2

180 tracers in water (Section 4.6 (c)).
The mobilities of the H+ and OH~~ ions in water (Table 4.9) have been

determined by combining measurements of the conductivity and the
transference numbers. It is found that the mobilities of H+ and OH~ are
considerably greater than those of other univalent ions in water (for
example, the mobilities of Na+ and Cl~ at 25 °C are 0-53 X 10~3 and
0-79 X 10~3 cm2 V-1 s-1 respectively (Eigen and De Maeyer 1958)). On
the other hand, the mobility of the proton in water is smaller than in ice
by an order of magnitude (Table 3.13). Eigen and De Maeyer (1958)
interpreted these results as follows. The abnormal mobilities of H+ and
OH~ in both ice and water are a consequence of hydrogen bonds between

855339 Q



TABLE 4.9

Constants pertaining to ionic dissociation and migration in pure water at 25 °Cf

Ionic dissociation : H2O ?^ H+ + OH

Dissociation constant

Ionic concentration
Water concentration
Bate constant for dissociation
Rate constant for neutralization
Enthalpy of dissociation
Entropy of dissociation

Bates of proton transfer :

H20+H30
+ -^> H30

++H20

H20+HCT -A> HO~+H20
Belated quantities :

Mobility of H+

Mobility of OH"
Direct current conductivity (where F is the
Faraday constant)
Heat of hydration of H+

Heat of hydration of OH~
Mean lifetime of an H30

+ ion
Mean interval between the associations of a given
water molecule with a proton

ks [H+][OH~]
K™ kK [H20]
[H+] = [OH']

[H20]
Kj)

&K

Aff
&s

Bate constant fct

Bate constant &2

u+
u
= J'[H+](M+ + «_)

•TH+

TH20

= l-8214x 10~16 mol litre"1

= 1-004X 10-' mol litre"1

= 55-34 mol litre""1

= 2-5 x 10~5 s~l

= 1-4 (±0-2) X 1011 litre mol-1

= 13-5 kcal mol-1

= — 27 cal deg""1 mol"1

= 10-6 (±4)X 109 litre mol-1 £

= 3-8 (±1-5) X 10" litre mor1

= 3-62xlO-3cm2 V^s-1

= 1-98 x 10-3 cm2 V-1 s-1

= 5-7 X 1C-8 ft-1 cm-1

= 276 kcal mol-1

= 111 kcal mol-1

« 10-12 s§

« 5x 10-4s||

s-1

r't
s-1!

f Unless otherwise noted, values are taken from the review of Eigen and De Maeyer (1958).
j Meiboom (1961). § Eigen (1964). || See text.
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molecules; these links facilitate rapid transfer of protons. One of the
protons of an H30

+ ion, for example, can jump along a hydrogen bond
to combine with the adjacent water molecule:

Similarly, one proton of a water molecule can jump along a hydrogen
bond to combine with an OH" ion:

Both processes result in the migration of electric charge, and in the
presence of an applied field give rise to the flow of current.

According to Eigen and De Maeyer, the mobility of H+ is smaller in
water than in ice because hydrogen bonding is imperfect in the liquid
phase. Rapid transfer of protons, of the sort just mentioned, takes
place only within the strongly hydrated complex, presumed to be
H9OJ. Further translation of a proton must await the formation of a
strong hydrogen bond at the periphery of the complex. Thus the velocity
of proton transfer in water is limited by the rate at which molecules in
the vicinity of the hydrated complex come into positions which permit
rapid transfer of the proton and thus diffusion of the complex.

The rate constants for the proton transfer reactions have been deter-
mined from NMR measurements by Meiboom (1961); they are given in
Table 4.9.

(/) Molecular displacements: a summary
We are still far from having a detailed picture of molecular movements

in water, but a number of qualitative conclusions can be inferred from
the rate properties discussed in the five preceding sections.

(1) Molecules in liquid water near the melting-point experience
roughly 1011 or 1012 reorientational and translational movements per
second. Ice molecules near 0 °C experience only about 105 or 106 re-
orientational and translational movements per second. This is clearly
one of the chief differences between ice and water.

(2) Raising the temperature of water increases the rate of reorienta-
tions and displacements, as is apparent from the decreasing viscosity,
the decreasing relaxation times, and the greater rate of self-diffusion.
The rotational correlation time from NMR studies indicates that when
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the critical point is reached, the frequency of reorientations approaches,
within a factor of 10, the frequencies of intramolecular vibrations.

(3) The rate of molecular reorientations and translations in liquid
D2O is slower than in ordinary water, as shown by the greater viscosity,
the longer relaxation times, and the smaller coefficient of self-diffusion
of heavy water.

(4) A number of similarities between those properties that depend
on the rate of reorientation and those properties that depend on the
rate of displacement, suggest that the processes of reorientation and
translation are closely related. The activation energies for dielectric
relaxation, self-diffusion, and viscous flow are roughly equal at 25 °C,
though the activation energy for self-diffusion appears to be less strongly
temperature-dependent than the others. Moreover, the quantity
rax T\t] is nearly independent of temperature, which also suggests that
molecular translation and reorientation are related. No data seem to
be inconsistent with a mechanism that involves jumps of individual
water molecules.

(5) Neutron scattering studies indicate that, at least near the melting-
point, reorientation and translation proceed by a 'jump and wait'
mechanism, rather than by a series of small jumps.

(6) The decrease with increasing temperature of the activation energies
for dielectric relaxation and viscous flow may be a reflection of smaller
mean hydrogen-bond strengths at higher temperatures. Similarly, the
decrease with increasing pressure of the activation energy for viscous
flow may indicate that compression tends to weaken or break hydrogen
bonds.

(7) Roughly two out of every 109 water molecules at 25 °C are ionized,
and the resulting protons jump rapidly between molecules. The mean
lifetime of a protonated water molecule is ~ 10~12 s, and the mean
interval between successive associations of a given water molecule with
a proton is •—> 5 X 10~4 s.

4.7. Vibrational spectroscopy
Vibrational spectroscopy is a suitable technique for studying the

V-structure of liquid water, because the periods of vibration (10~13 to
10~14 s) for both the intramolecular and intermolecular modes of water
are short compared to the average time (lO"11 to 10-12 s) between
diffusional motions of molecules. The vibrational spectrum, moreover,
is sensitive to the local environments of the molecules. Consequently
some idea of the relative positions of molecules during very short time
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intervals can be derived from vibratioiial spectra. Interpretation of the
spectral data is complex, and since the interpretation given below is
based on analysis of the ice spectrum we shall assume that the reader
is familiar with Section 3.5 (a).

(a) Identification of spectral bands
For every major vibrational band of ice in the range 50-4000 cm-1,

there exists a corresponding band in the spectrum of liquid water,
though the band maxima are not necessarily at the same frequencies.
The band widths in liquid water are not very different from those in ice I
near the freezing-point. The bands of the liquid-water spectrum are
listed in Table 4.10. Half-widths, extinction coefficients, and tempera-
ture dependencies of the band frequencies are given when they are known.
Most of the bands can be identified in the infra-red and Raman spectra
shown in Fig. 4.22.

Three separate bands are found in the frequency region containing the
fundamental modes of water vapour: 

(1) By far the most prominent is the broad, irregularly shaped band
with its principal maximum near 3490 cm"1 in the infra-red
spectrum and near 3440 cm"1 in the Raman spectrum. This band
is associated with 0-H stretching vibrations of molecules. It is
located at a much lower frequency than the 0-H stretching modes
of water vapour (3657 and 3756 cm"1) but not at quite so low
a frequency as the O—H stretching band of ice (maximum near
3200 cm"1). The first overtone of the H-O—H bending modes of
molecules probably contributes to the band.

(2) A band near 1645 cm-1 arises from the H-O-H bending modes of
molecules. This band also is intermediate in frequency between the
corresponding bands in the vapour (1595 cm-1) and ice (<--1650
cm"1).

(3) The very broad but very weak band with its maximum near 2125
cm^1 is the counterpart of the 'association band' in ice. It may be
composed of overtones of intermolecular modes, or a combination
of the 1645 cm-1 band with an intermolecular mode, or both.
Williams (1966) proposed the assignment v2-\-vL—VT for this band.

Three bands are found at lower frequencies and must arise from inter-
molecular modes:

(1) The most intense has its maximum in the infra-red spectrum near
700 cm-1, but extends from 300 to above 900 cm-1. In DaO the



FIG. 4.22. Infra-red and Raman spectra of water, (a) Photoelectric Raman
spectra of liquid water and heavy water. Arrows show positions of bands
and components of bands. The rise on the right-hand side is due to the exciting
arc. A = amplification. (6) Infra-red spectra of liquid water and heavy water.
Arrows on top show weak absorptions probably arising from HDO impurities

in D2O. Adapted from Walrafen (1964) with changes of notation.
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band maximum is near 500 cm"1. The position of this band and
its frequency shift for isotopic substitution suggest that it is the
counterpart of the VL librational mode of ice. Its frequency is
lower than the FL mode of ice (~ 795 cm"1 at 0 °C; Zimmermann
and Pimentel 1962), and shifts to even lower frequencies as water is
heated. This band also appears in the inelastic neutron and Raman
spectra (see Table 4.10). In the Raman spectrum two other
librational bands may be present near 450 and 550 cm"1.

(2) An infra-red band with its maximum near 193 cm"1 appears as a
prominent shoulder on the 700 cm"1 band. The band frequency
shifts only to 187 cm"1 in D2O, so the band must arise from
hindered translations of molecules. This mode, which is also
detected by Raman and inelastic neutron spectra, undoubtedly
corresponds to the VT mode of ice.

(3) A narrow band appears at about 60 cm"1 in the Raman and in-
elastic neutron scattering spectra. Its frequency in D2O is also
near 60 cm-1. This band probably arises from hindered transla-
tions and corresponds to the vT'2 mode of ice.

In addition to the above bands, several very small energy transfers
(in the range 5 (il) cm"1) have been observed by several investigators
in inelastic neutron spectra (see Larsson 1965). The existence of these
energy transfers has not, however, been firmly established.

(b) The 0-H and 0-D stretching bands
The 0-H stretching band is the most thoroughly studied spectral

region of liquid water. As in the case of ice, the stretching band of a
dilute solution of HDO in either H2O or D2O is the key to understanding
this spectral band. The HDO bands are simpler because the stretching
vibrations of an HDO molecule are only weakly coupled to the vibrations
of neighbouring molecules, and also because Fermi resonance with the
overtone of vz is absent (Section 3.5 (a)). As a result, the shape of these
bands can be interpreted in terms of the local environments of water
molecules, or in other words, in terms of the V-structure of the liquid.
We shall therefore start by discussing these bands quite thoroughly. We
shall then briefly consider the stretching bands in pure H2O and D20.

Fig. 4.23 shows the Raman stretching bands of dilute solutions of
HDO in D20 and H20. We shall call these the uncoupled 0-H and O-D
stretching bands. Panels (a) and (b) are smoothed spectra reported by
Wall and Hornig (1965) for 5 mol per cent isotopic solutions. These
bands exhibit no structure and only a slight asymmetry. They are



FIG. 4.23.
(For caption see opposite.)
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centred at higher frequencies than the corresponding bands in ice I and
are about five times broader (Table 4.11). Panel (c) shows the uncoupled
0-D band recorded by Walrafen (1967 a, 6) for a 6-2 molar solution of
D20 in H20, using a laser Raman source and a narrower slit width than
that used by Wall and Hornig. The band is similar to the one reported
by Wall and Hornig but it is more markedly asymmetric, and the con-
tour on the high-frequency side seems to contain three points of inflexion,
indicating the presence of a shoulder. Panel (d) shows the temperature
dependence of the uncoupled O-D band as reported by Walrafen
(19656). The band maximum moves to higher frequencies as the
temperature is increased, and the spectra for different temperatures pass
through a common point (an isosbestic point) at 2570 (±5) cm-1.

The infra-red spectra of the uncoupled stretching bands have been
studied under a greater variety of conditions. Falk and Ford (1966)
recorded the infra-red spectra of these bands between 0 and 130 °C. The
bands have the same general appearance as the Raman bands in Fig. 4.23
(a) and (6); spectroscopic constants for them are given in Table 4.11.
Franck and Roth (1967) studied the infra-red spectrum of the uncoupled
band at temperatures and pressures from 30 to 400 ° C and from 50 to 5000
bars respectively. For water at a constant density of 1-0 g cm.-3, the
frequency of the band maximum shifts from 2507 cm-1 to 2587 cm"1 and
the integrated band intensity falls by 40 per cent as the temperature is
increased from 30 to 300°. The band becomes more asymmetric at higher
temperatures, but the contour is perfectly smooth with no hint of a
shoulder. For water maintained at 400 °C, the integrated band intensity
decreases by a factor of 6-4 as the density is decreased from 0-9 to 0-0165
g cm"3. At all densities down to 0-1 g cm-3, the band has a smooth con-
tour and no shoulder, and the frequency of maximum absorption shifts
gradually from 2605 cm-1 to >—' 2650 cm"1. Below 0-1 g cm"3, the rota-
tional fine structure becomes apparent and is very distinct at 0-0165 g

FIG. 4.23. Uncoupled O-H and O-D stretching bands in the Raman spectrum of water,
(a) Uncoupled stretching bands of 5 mole per cent H2O in D2O and D2O in H2O, both
at 27 °C, as reported by Wall and Hornig (1965).f (6) Effect of temperature on O-D
uncoupled stretching band as reported by Wall and Hornig (1965). (c) Argon-ion laser
Raman spectra of a 6-2 M solution of D2O in H2O at 25 (± 1) °C, as reported by Walrafen
(19676). The amplification of the upper tracing is twice that of the lower tracing.
(d) Effect of temperature on the O—D uncoupled stretching band as reported by Walrafen
(1967 b). The dashed vertical line indicates the isosbestic point near 2570 cm-1. These
spectra were obtained with conventional mercury excitation and a narrow (15 em"1)

slit width.

f The uncoupled O-H band of panel (a) may have been inverted through its maxi-
mum during preparation of the original paper (private communication from Dr. Wall).



TABLE 4.11

Characteristics of uncoupled stretching bands^

Phase

Ice I
-160°C (IR)6

Ice II
-160 °C (IR)C

Liquid
22° (IR)<*
25° (R)»
27° (R)«
62° (R)"
65° (R)«
120° (IR)d

200° (IR, 2800 bars)'
300° (IR, 5000 bars)'

HDO vapour
(IR)«

O— H stretching mode

Frequency! (cm"1)

3277

(3373
(3357
13323

3400

3439

3460

3707

Half-width§ (cm"1)

~50

each
< 18

255 ±5

278

270±5

O— D stretching mode

Frequency! (cm"1)

2421

1
2493
2481
2460
2455

2500
2507±5
2516
2550±5
2529
2550
2568
2587

2727

Half-width§ (cm"1)

~SO

each
~5

160±5

160

166
180±5
195
153

•(• Raman bands are designated by R and infra-red bands by IR. All entries refer to atmospheric pressure, unless noted
otherwise.

J Frequency of band maximum.
a Benedict et ol. (1956).
c Bertie and Whalley (1964 b).
o Wall and Hornig (1965).
« Walrafen (19676).

§ Width of band at half maximum intensity.
b Bertie and Whalley (1964 a).
d Falk and Ford (1966).
f Franck and Roth (1967).
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cm"3. Other studies of the uncoupled infra-red stretching band were
reported by van Eck et al. (1958) and Hartman (1966).

Table 4.11 lists the frequencies of the uncoupled stretching bands in
the solid, liquid, and vapour states. The frequency of each isotopic
band in the liquid (for example, the 0-H band for 27° at 3439 cm-1) lies
between the ice I (3277 cm-1) and vapour (3707 cm-1) frequencies for
the band. Wall and Hornig (1965) interpreted these relative frequencies
using the well-known correlation between hydrogen-bond strength and
the magnitude of the lowering of the 0-H stretching frequency from the
vapour value (for example, Pimentel and McClellan 1960). In their
view, the relative frequencies 'indicate that the most likely hydrogen
bond strength in liquid water is much less than in ice, but still quite
strong'. They believe that the small shift in frequency of the band
maximum between 27 and 65 °C (see Table 4.11) shows that there is no
marked change in the most likely hydrogen-bond strength of liquid water
over this temperature range. They suggested that the slight asymmetry
of the uncoupled stretching band 'originates in the lower energy of
stronger hydrogen bonds'. The frequency distribution of the un-
coupled infra-red bands can be interpreted in the same way: the upward
shift in frequency as water is heated indicates that the mean hydrogen-
bond strength decreases gradually as the critical point is approached.

Wall and Hornig (1965) interpreted the widths of the uncoupled 0—H
and 0-D stretching bands in terms of the local environments of mole-
cules (local V-structures) in liquid water.f They first noted that the
uncoupled bands are narrower than the stretching bands in pure H20
and D20. For example, the half-width of the O-D stretching band of
a dilute solution of HDO in H20 is about 160 cm"1, whereas the half-
width of the coupled O-D stretching band in pure D20 is roughly
306 cm-1 (Schultz andHornig 1961). But as can be seen from Table 4.11,
the uncoupled 0-H and O-D bands are still very wide (270 and 160 cm-1,
respectively), even when compared with the uncoupled O-H and O-D
bands of ice I (50 and 30 cm"1, respectively). Clearly, this residual
width cannot arise from vibrational coupling with neighbouring mole-
cules, as this form of coupling has been largely eliminated by using dilute
isotopic solutions. Nor can the residual width arise from hydrogen
bonding per se, since hydrogen bonds are present in ice II, where un-
coupled O-D stretching bands are 5 cm."1 wide. According to Wall and
Hornig, temperature broadening cannot account for the width of the

f The material on which this interpretation is based appears in Section 3.5 (a).
Readers not familiar with this material may refer to the summary on p. 129.
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uncoupled bands; the half-width of the uncoupled Raman band increases
by only 6 cm-1 over the temperature range of 27-65 °C.

The origin of the breadth of the uncoupled bands, Wall and Hornig
concluded, is structural disorder in liquid water. The distribution of
oxygen—oxygen separations of nearest neighbours in the liquid gives rise
to a distribution of perturbing potentials of the static field type (U'j in
eqn (3.15)) at 0-H and 0-D groups, and hence to a distribution of 0-H
and 0-D stretching frequencies. The uncoupled stretching bands of
liquid water are broader than those of ice I because the range of nearest-
neighbour oxygen-oxygen distances is greater in the liquid. Their
breadth increases slightly with temperature because the distribution of
nearest-neighbour separations becomes more diffuse at higher tempera-
tures.

Two interpretations of the shape of the uncoupled stretching
bands in liquid water have been given. The first is that of Wall and
Hornig (1965), Falk and Ford (1966), and Franck and Both (1967), all
of whom emphasized that their results indicate an intensity distribution
that is continuous and passes through a single maximum (except above
the critical temperature at densities below 0-1 g cmr3, where the rota-
tional structure becomes important). They noted that such a distribu-
tion seems to be inconsistent with models that depict water as a mixture
of a small number of distincly different species of molecules. The basis
for this argument is that if a small number of distinct species do indeed
exist, then during a period long compared to a molecular vibration, each
species is characterized by a distinct molecular environment. Now the
uncoupled stretching bands are sensitive indicators of distinct local
environments, and should thus manifest these distinct environments.
Ice II presents a striking example of this (Section 3.5 (6) and Table 4.11).
In this polymorph there are four distinct nearest-neighbour separations,
and four separate peaks are visible in the uncoupled O-D stretching
band. Hence the apparent absence of structure in the uncoupled
stretching band of water seems to rule out the existence of a small
number of distinct local environments in liquid water. The distorted
hydrogen-bond and the random-network models for water, in contrast
to the mixture models, require a continuous distribution of nearest
neighbouring oxygen-oxygen separations. These models thus seem to
be consistent with the shape of the uncoupled stretching band.

On the basis of their interpretation of the uncoupled stretching-band
shape, Wall and Hornig estimated the relative frequency of nearest
neighbours in liquid water at each intermolecular separation. They did
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this by means of the well-known correlation between O-H stretching
frequencies and oxygen-oxygen separations in hydrogen-bonded crystals
(Pimentel and McClellan 1960). They assumed that the same correlation
is applicable to liquid water and were thus able to identify an oxygen-
oxygen separation with each O-H stretching frequency. Details of this
procedure are given in their paper. Their results are shown in Fig. 4.24.
The resulting curves resemble the radial distribution curves derived
from X-ray diffraction (Section 4.2 (a)): nearest neighbours do not
approach within about 2-75 A of each other, and the most probable
separation is about 2-85 A. Wall and Hornig noted that the agreement
between these curves and the X-ray curves gives added support to their
hypothesis that the uncoupled band breadth reflects a continuous
distribution of intermolecular distances in the liquid. The curves of
Fig. 4.24 differ from the X-ray curves in that they refer only to separa-
tions of nearest neighbours. Thus the frequency of separations falls off
above 2-85 A and distances as large as 3-10 A may be present. It should
be noted that the slope of the correlation curve which relates O-H
stretching frequencies and oxygen-oxygen separation (Wall and Hornig
1965) drops abruptly at about 2-85 A and has a small value for all larger
separations. This means that the information contained in the distribu-
tion functions of Fig. 4.24 is much less detailed for separations greater
than 2-85 A than for those less than 2-85 A.

A second interpretation of the shape of the uncoupled stretching band,
based mainly on the uncoupled Raman bands shown in Fig. 4.23 (c)
and (d), has been proposed by Walrafen (1967 a, b). He believes that the
observed band arises from the superposition of two or three relatively
broad, overlapping component bands, each of which is Gaussian in
shape. He found that at least two Gaussian components are needed to
fit the observed uncoupled 0-D Raman band at 25 and 65 °C. One of
these components is centred near 2520 cm^1; another is centred near
2650 cm-1 and accounts for the apparent shoulder on the high-frequency
side of the bands in Fig. 4.23 (c) and (d). As water is heated, the intensity
of the high-frequency component increases compared to that of the low-
frequency component. Walrafen believes that the low-frequency
component is associated primarily with hydrogen-bonded water mole-
cules, and the high-frequency component primarily with non-hydrogen-
bonded molecules, and that the increasing intensity of the high-frequency
compon ent as water is heated reflects the conversion of hydrogen-bonded
molecules to non-hydrogen-bonded molecules. This interpretation is
supported by the discovery of an isosbestic point, a phenomenon that



Fia. 4.24. Distribution of nearest-neighbour separations in liquid water, as
derived from shape of uncoupled stretching bands. The ordinate of the curve
at any given distance is proportional to the fraction of molecules having a
nearest neighbour at that distance, (a) From O—H band at 27 °C. (b) From
O-D band at 27 °C. (c) From O-D band at 65 °C. From Wall and Hornig (1965).
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is often associated with two absorbing species in equilibrium. Moreover,
it is consistent with Walrafen's explanation of the shape of the stretching
band in pure H20 (see below) and with his studies of the intermolecular
vibrations (Section 4.7 (c)).

This interpretation of the uncoupled stretching band shape rests on
the assumption that the component vibrational Raman bands are each
Gaussian in shape, since this assumption is used to dissect the observed
band into components. Furthermore, the individual component bands
that generate the observed band are found to overlap to a considerable
extent, so that an appreciable fraction of the different species that are
assumed to be responsible for the component bands share a common set
of frequencies. Questions can be raised about each of these points.

In the first place, most investigators now agree that the contour of the
uncoupled 0-H (and 0-D) band of water is the envelope of many narrow
but overlapping bands, each of which is associated with an 0-H (or
0-D) oscillator in a particular environment. The same is presumably
true of the component band that Walrafen assigns to the hydrogen-
bonded species in the liquid. The shape of this band must be determined
to a large extent by the distribution of 0—- 0 separations in the hydrogen
bonds in this component of the liquid. The frequency of maximum
intensity corresponds roughly to the most probable 0—-0 separation;
frequencies on either side correspond to larger and smaller 0—-0 separa-
tions. Now the distribution of these separations is almost certainly not
Gaussian in shape: the steep increase of repulsive energy at smaller
separations undoubtedly suppresses the relative abundance of hydrogen
bonds having lengths smaller than the most probable separation. Thus
the component of the observed band that might arise from hydrogen-
bonded 0-H groups would not be expected to have a Gaussian
shape.

Furthermore, it is difficult to see why the component band assigned to
the non-hydrogen-bonded species should be as broad as it is. Some
variable element in the non-hydrogen-bonded O-H (or 0-D) environ-
ment must be assumed to exist which is different from a hydrogen bond
yet can produce a large shift in the 0—H (or 0-D) frequency. Indeed,
an appreciable fraction of non-hydrogen-bonded 0-H (or 0—D) groups
must exist in an environment which is sufficiently perturbed to produce
frequencies that are identical with those of some of the hydrogen-bonded
0-H groups. It is difficult to imagine what kind of variability in the
environment, other than hydrogen bonding, could be responsible for such
large frequency shifts. Of course, if the variability of this environment
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is ascribed to hydrogen bonding, then the entire analysis becomes virtu-
ally equivalent to the alternative one of Wall and Hornig, Falk and
Ford, and Franck and Roth. The only remaining difference would be
Walrafen's emphasis on grouping the many different environments into
two broad classes. The isosbestic point observed by Walrafen suggests
that this view may be a reasonable one.

In the opinion of the present authors, the following conclusions may
be based on studies of the uncoupled stretching bands: (a) A range of
0-H environments, or equivalently of hydrogen-bond strengths, is
present in liquid water, as shown by the widths of the bands. (6) Water
does not contain a small number of distinctly different molecular species,
as indicated by the relatively smooth band contours that pass through
a single maximum. The band shapes, however, do not rule out the possi-
bility that the liquid contains two or more species, each of which exhibits
a wide range of molecular environments. Of course, in the limit of many
species, or of a wide variability of the environments of each species, this
description differs only in semantics from the description of the liquid
as a continuous distribution of molecular environments, (c) The presence
of some non-hydrogen-bonded 0-H groups in the liquid which have
environments distinctly different from the majority of 0-H groups
cannot be excluded on the basis of the band shapes. Non-hydrogen-
bonded groups are more difficult to detect by infra-red methods than are
hydrogen-bonded 0-H groups, because the intensity of absorption of the
0-H stretching band increases by a factor of about 10 when the O-H
group forms a hydrogen bond (Van Thiel et al. 1957, Swenson 1965).
Thus it is possible that a sizeable number of non-hydrogen-bonded 0-H
groups are present in water even below 100 °C, but do not produce a
perceptible second maximum at the high-frequency side of the infra-red
stretching band because their absorption is too small. The effect of
hydrogen-bond formation on the intensity of Raman scattering has
apparently not been studied, and it is not inconceivable that free 0-H
groups might scatter less strongly than 0-H—O groups. Indeed, it
should be noted that the total integrated intensity of both Wall and
Hornig's and Walrafen's Raman spectra (Fig. 4.23) decreases with in-
creasing temperature, as does the integrated intensity of the infra-red
spectrum. This behaviour is consistent with the breaking of hydrogen
bonds, though it could also be associated with the weakening of hydrogen
bonds. Similarly, the apparent shoulder observed by Walrafen (1967 6)
on the high-frequency side of the uncoupled Raman band could arise
from the presence of non-hydrogen-bonded 0-H groups, or, as will be
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discussed in Section 4.8 (a), it could also be regarded as arising from
highly distorted hydrogen bonds.

Several authors have made specific estimates of the fraction of broken hydrogen
bonds in the liquid from the distribution of intensity across the uncoupled stretch-
ing band. Wall and Hornig (1965) argued on theoretical grounds that' vapour-like
molecules' absorb above 3600 cm"1, and comprise no more than 5 per cent of the
liquid. The lower bound of 3600 cm"1 for absorption of vapour-like molecules is
supported by Stevenson's study (1965) of H2O in dilute CC14 solution; he found that
the vx and v3 stretching modes are at 3620 and 3710 cm"1 respectively. Walrafen
(1966, 1967 a) argued, however, that the 3600 cm"1 lower bound is at least 100cm"1

too high. Adopting a lower bound of 3500 cm"1 on the basis of the Raman O-H
stretching band in pure H2O near the critical point, Walrafen estimated that at
least 30 per cent of the water molecules at 27 °C are not hydrogen-bonded.

The stretching bands in H20 and D20
The stretching bands in pure H20 and pure D20 are far more difficult

to interpret than the uncoupled stretching bands of HDO. The additional
difficulties stem from several sources:

(1) The frequencies of the two O-H stretching vibrations, v1 and v3,
and that of the first overtone of the bending vibration, 2v2, are
close to each other.

(2) Each of these vibrations may couple with the vibrations of neigh-
bouring molecules, causing a splitting of each band. Since the
band frequencies are closely spaced, the split bands overlap one
another.

(3) The overlapping v1 and 2v2 modes may be in Fermi resonance with
each other (that is, 2v2 may borrow intensity from v^). Further-
more, owing to perturbations of neighbouring molecules, the two
O-H bonds of a given molecule may not be identical; consequently
the vs vibration may not be strictly asymmetric, so that it may also
participate in Fermi resonance with 2v2.

The shapes of the stretching bands of pure H20 and D20 have not
yet been adequately explained in terms of all these effects, but several
proposals have been made to explain the main features of the bands.
Let us consider three of them.

Cross et al. (1937) and Walrafen (1967 a) ascribed the structure in the
Raman stretching band (Fig. 4.22 (a)) to the presence of water molecules
forming different numbers of hydrogen bonds. This interpretation is
based partly on the observation that increasing temperature causes
a decrease in intensity of the O-H band in the 3200 cm."1 region and
an increase in intensity in the 3600 cm."1 region. These changes are

855339 K
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attributed to larger numbers of broken hydrogen bonds at higher tem-
peratures. Walrafen (1967 a) found that he could fit the observed band at
all temperatures from 10 to 90 °C by four Gaussian components, two of
which (the lower-frequency ones) decrease in intensity as water is heated
and two of which increase. He assigned the components which increase
on raising the temperature to the two intramolecular stretching modes
of non-hydrogen-bonded molecules, and the components which decrease
on heating to two vibrations of hydrogen-bonded molecules. Walrafen
interpreted the structure in the infra-red stretching band in the same
general way.

Schultz and Hornig (1961) explained the shape of the Raman stretch-
ing band in terms of Fermi resonance. They measured the depolariza-
tion of Raman scattering as a function of frequency across the band.
Using this as a guide, they assigned the slight shoulder near 3600 cm"1

to v3,f the main maximum primarily to v1; and the component near
3200 cm-1 to 2v2 in Fermi resonance with vv The variation of band shape
with temperature was attributed by them to changes in the Fermi
resonance that arise from shifts in frequency of the v1; v2, and vs vibra-
tions.

A slightly different interpretation of the stretching band shape in
water was proposed by Schiffer and Hornig (1967). They believe that
collisions of molecules in the liquid give rise to a range of v1 and v3

vibrational frequencies, the mean v1 and v3 frequencies being near
3400 and 3600 cm-1 respectively. The overtone of v2 near 3200 cm"1

overlaps the vx vibrations of lowest frequency, and thereby gains
intensity from them through Fermi resonance. As water is heated, the
mean frequencies of the vx and v3 bands increase. This has the effect of
diminishing Fermi resonance between the v1 and 2v2 vibrations, and thus
of decreasing the band intensity near 3200 cm-1.

(c) Intermolecular vibrations
The three vibrational bands arising from intermolecular vibrations

were mentioned in Section 4.7 (a). Near 0 °C all three bands are remark-
ably similar to the corresponding bands of ice. In fact, over the 60-900
cm-1 region, the inelastic neutron spectra of ice at — 3 °C and of liquid
water at +2 °C are virtually identical (Larsson and Dahlborg 1962).

The broad VL band (300-900 cm-1), attributed to molecular librations,
appears in infra-red, Raman, and inelastic neutron spectra. At 0 °C, the

t Senior and Thompson (1965) disputed this assignment. See their paper for a
discussion of the merits of several interpretations of the stretching region.
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infra-red band maximum is at ~ 700 cm"1 (Draegert et al. 1966), some-
what less than the ~ 795 cm"1 for ice I (Zimmermann and Pimentel
1962). The band maximum continues to shift to lower frequencies with
rising temperature, as does the VL band of the inelastic neutron spectrum.
In Section 3.5 (b) we associated lower frequencies of the VL band in some
ice polymorphs with more easily bent hydrogen bonds. We also found
that the polymorphs having lower VL frequencies probably have weaker
hydrogen bonds. It seems likely, then, that the lower VL frequencies in
water as compared to ice indicate that hydrogen bonds in the liquid are
more easily bent and are weaker than those of ice. Heating further
weakens and aids distortion of the hydrogen bonds.

The less intense VT band, attributed to hindered translations, has its
maximum near 199 cm-1 at 0 °C. This is only slightly less than the
maximum of the VT band in ice I, •—- 214 cm"1 (Zimmermann and
Pimentel 1962). With increasing temperature the band maximum in
water shifts to lower frequencies by about 0-2 cm-1/°0. A similar shift
of the Raman VT band has been observed (Walrafen 1966). In Section
3.5 (6), the lower VT frequencies of some ice polymorphs were attributed
to more easily stretched hydrogen bonds in these polymorphs. Thus it
seems reasonable to suppose that hydrogen bonds in liquid water are
more readily stretched than those in ice, and become increasingly so at
higher temperatures.

The intermolecular bands in the Raman spectrum have been investi-
gated by Walrafen (1964, 1966, 1967 a). These bands are difficult to
study owing to their very low intensities. Walrafen believes that the
VL band is composed of three Gaussian components, at ~ 440, 540, and
720 cm"1. He found that the integrated intensities of the VL, VT, and vTa

bands decrease in parallel with rising temperature. He assigned these
bands to specific vibratory motions, and then interpreted their tempera-
ture dependence in terms of changes in water structure.

Walrafen assigned the intermolecular bands to the normal modes of
vibration of the five-molecule hydrogen-bonded structure shown in
Fig. 4.25. This model was chosen on the basis of evidence from X-ray
diffraction (Section 4.2 (a)) that indicates some water molecules are
tetrahedrally coordinated in the liquid. The model is assumed to have
C2v symmetry for simplicity. The normal modes include three non-
symmetric deformations that correspond to librations about the three
molecular moments of inertia, and Walrafen (1964, 1967 a) assigned the
three VL components to these modes. The model predicts four hydrogen-
bond stretching modes; Walrafen assigned the VT band near 175 cm"1 to
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these. The remaining normal modes are symmetric deformations, corre-
sponding to hydrogen-bond bending. The band at 60 cm™1 was assigned
to these. Only small isotope effects are expected for the symmetric
deformation modes and the hydrogen-bond bending modes, since entire
water molecules, not hydrogen atoms, are the vibrating masses in these
modes.

FIG. 4.25. Hydrogen-bonded structure, containing five
water molecules, used by Walrafen (1964) to assign inter-
molecular bands of water to normal vibrations. Small
spheres represent hydrogen atoms; large spheres, oxygen
atoms; and discs, hydrogen bonds. From Walrafen (1964).

Walrafen (1964, 1966) attributed the decreasing Raman intensities
of the intermolecular bands at higher temperatures to the breakdown of
tetrahedral groups of water molecules. He represents the breakdown by
an equilibrium between 'bound' molecules which are hydrogen-bonded
to four neighbours, and 'unbound' molecules which are not: U ;== B.
Assuming that the integrated intensity of the VT band is proportional
to the concentration of bound molecules, Walrafen was able to estimate
the fraction of hydrogen-bonded molecules at each temperature. His
results, shown in Fig. 4.11, are that the mole fraction of hydrogen-bonded
molecules decreases from 0-6 at 0 °C to 0-1 at 100 °C. Walrafen (1966)
found that AH° associated with the process B -> U is 5-6 kcal mol-1.
Since complete breakdown of a tetrahedral lattice would necessitate
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rupture of two hydrogen bonds per molecule, this AH° corresponds to
an average hydrogen-bond energy of 2-8 kcal mol"1.

Other explanations are possible for the decreased Raman intensity at
higher temperatures. One was mentioned in passing by Walrafen (1966):
he suggested that the decreased Raman intensity of the intermolecular
modes might be associated with strongly bent hydrogen bonds. Taking
this view, the decreasing intensities at higher temperatures are indica-
tive of larger numbers of distorted hydrogen bonds, and the U molecules
correspond to molecules forming only very distorted hydrogen bonds.
Alternatively, the decreased intensity might have the same origin as the
decrease in intensity with increasing temperature of the main maximum
of the VT band in the infra-red spectrum of ice I (Bertie and Whalley 1967;
Section 3.5 (a)). Bertie and Whalley believe this effect is associated with
hot bands.

Clearly, if one accepts Walrafen's first explanation for the decrease
in Raman intensity of the intermolecular modes, then one must accept
his interpretation of the uncoupled stretching band in terms of an
equilibrium between hydrogen-bonded and non-hydrogen-bonded
molecules (Section 4.7 (&)). But then, since only 10 per cent of all
possible hydrogen bonds are supposed to remain at 100 °C, one must
ascribe nearly all the observed changes in the uncoupled stretching band
between the liquid and the vapour at 100° C to forces other than
hydrogen bonds. These changes in the uncoupled infra-red stretching
band consist in an upward shift in frequency of maximum absorption
(of ~' 260 cm"1) and a substantial decrease in total integrated intensity.
Such changes, however, are just those that usually accompany the
breaking of hydrogen bonds (Pimentel and McClellan 1960, p. 70). For
this reason one of the other explanations for the decrease in inter-
molecular Raman intensities seems more likely to the present authors.

(d) Overtone and combination bands
Although no detailed discussion will be given of the spectrum of water

at frequencies above 4000 cm-1, we should consider some studies of this
region which have led to conclusions about the structure of water.

Buijs and Choppin (1963) observed the temperature dependence of
the infra-red spectrum of water in the vicinity of 8000 cm-1.^ They
attributed the absorption of this region to the v1+v2+»'3 combination of
water vibrations. They suggested that this absorption is the resultant

f Thomas et al. (1965) have repeated this work, analysing the data in a slightly
different way. They have also studied the corresponding region of the D,O spectrum.
Luck (1965) made a similar study covering temperatures from 0 °C to the critical point.
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of three component bands whose intensities vary with the temperature.
The first component band (8000 cm"1) is prominent in ice, so they
assigned it to water molecules with both 0-H groups in hydrogen bonds.
They assigned the second band (8330 cm"1) to molecules with one 0-H
group in a hydrogen bond, and the third band (8620 cm"1) to molecules
with two free 0-H groups. From the temperature variation of the
extinction of each component, Buijs and Choppin calculated the relative
numbers of the three types of molecules in liquid water. The fraction of
molecules having no hydrogen bonds increases from 0-27 at 6 °C to
0-40 at 72 °C; the fraction of molecules having two hydrogen bonds
decreases from 0-31 at 6 °C to 0-18 at 72 °C; and the fraction of molecules
having one hydrogen bond is nearly constant at about 0-42.

Hornig (1964) disputed the basic assumption of this work: that the
temperature dependence of the infra-red band shape around 8000 cm"1 is
due to changing concentrations of different species of water molecules.
Hornig argued that if three distinct species of water molecules are
present, and if their presence causes structure in a combination band,
then their presence must also cause a similar structure in the uncoupled
fundamental stretching bands. Since these bands do not exhibit a
similar structure (Section 4.7 (6)), the temperature dependence of the
absorption near 8000 cm"1 almost certainly has some other cause.f
A more plausible explanation is that heating shifts the frequencies of the
fundamental modes, and these shifts alter Fermi resonances between
overlapping overtones and combination bands in this region.

4.8. The structure of water: conclusions based on properties
(a) Problems of describing the properties of water in terms of hydrogen bonds

As illustrated by numerous examples in this chapter, the hydrogen
bond is a useful concept for correlating data on water. In some instances,
however, care must be taken in describing the properties of water in
terms of hydrogen bonds; a tendency to view the hydrogen bond as
being completely analogous to the covalent chemical bond can be mis-
leading. For example, in several sections (3.6 (a), 3-6 (c), and 4.3 (a)) we
have noted that the energy of a hydrogen bond, unlike that of a typical
chemical bond at room temperature, depends strongly on the environ-
ment of the bond. Let us now consider a related point: the meaning of
the term 'break' as applied to hydrogen bonds in liquid water. Though
this consideration is largely a matter of semantics, it may explain in part

f Buijs and Choppin (1964) replied to this comment, but did not, in the opinion of
the present authors, answer Hornig's basic objection to their interpretation.
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the wide variation in estimates of the fraction of broken hydrogen bonds
in water (Pig. 4.11), and may give some insight into the process of
molecular reorientation in the liquid.

FIG. 4.26. Rotation of an H2O molecule in liquid water, as discussed in the text.

Suppose that we were able to determine the change in energy that
accompanies the rotation of a water molecule in the liquid, as shown in
Fig. 4.26. We shall assume that the rest of the liquid adjusts to the
rotation of molecule A in this figure, so that the energy of the system is
the same in the initial (I) and final (III) configurations. In the inter-
mediate configuration (II), where the hydrogen bond between A and B
is highly distorted or broken, the energy is greater. The maximum
energy of the two-molecule system is presumably less than that for two
isolated molecules, owing to dipole-dipole and other forces between the
molecules.

Let us define these energy changes more precisely. The coordinates
of molecules A and B, as well as the coordinates of the other molecules
(1,2,..., N) in the liquid, may be specified by a set of nine-dimensional
vectors, RA, RB, R1; R2,.--.- RAT- Three dimensions are needed for
specifying the molecular centre of gravity, three dimensions for the
molecular orientation, and three dimensions for the internal coordinates.
The potential energy of the liquid may then be written

The energy we require is the average value of U for a fixed orientation of
molecule B (denoted by 0B = 0) and a series of orientations of molecule
A (denoted 0A), when A and B are constrained to be at a distance E
apart, where S corresponds to a distance near the first maximum in the
radial distribution curve of liquid water. This energy can be found from
the function

U(B, 0A, 0B)

where the integration is over all coordinates except for those that
specify the orientations and relative positions of molecules A and B,
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and where the primes on dRA and dR'B indicate that some of the com-
ponents of these vectors (those depending on S, 0A, and 0B) have,
accordingly, been fixed. Now we wish to consider the dependence of
U(B, 0A, 0B) on 9A as molecule A rotates through the configurations
I, II, and III of Fig. 4.26, molecule B being held in the fixed orientation
given by 0B = 0.

FIG. 4.27. Possible energy curves for the rotation of one water molecule with
respect to another, as shown in Fig. 4.26.

Fig. 4.27 shows four conceivable forms for the energy U(B, 0A, 0) as
a function of the coordinate of rotation, 0A. Curve a depicts the energy
U as rising gradually to a maximum value at configuration II, and then
falling gradually. Curve b depicts the energy rising more abruptly,
being relatively flat in the region of configuration II, and then falling
abruptly. Curve c is similar to b, but has a small minimum around
configuration II. Curve d is nearly identical to a, but contains three
points of inflexion between the minimum and the maximum, rather
than one.

If the energy U follows a curve similar to b or c, it is reasonable to
speak of 'broken' hydrogen bonds, because the energy of the two-
molecule system is distinctly different in configuration II than in
configurations I and III. But if the energy follows a curve similar to a,
the term 'broken' does not have a well-defined meaning and it is perhaps
better to speak in terms of 'distortion' of the hydrogen bond. Indeed,
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in this case, attempts to infer the fraction of broken hydrogen bonds in
liquid water by various experimental and theoretical methods should
produce indecisive or even contradictory answers. This is so because,
for curve a, a 'broken' bond does not correspond to any well-defined
region of the energy curve; consequently different methods of analysis
of the properties of water may consider a bond as 'broken' when different
points on the curve have been reached. In short, the fraction of broken
hydrogen bonds in the liquid may not be a useful parameter for describing
water. The situation is less clear if the energy follows curve A, but it still
seems better to speak in terms of distortion.

Though it is not yet possible to conclude which, if any, of the curves
in Fig. 4.27 is a correct qualitative representation of the energy for this
situation, spectroscopic data suggest that curve a or d is closer than the
others to the true curve. If curves b or c were correct, one would expect
the uncoupled 0-H and 0-D stretching bands to reflect the presence of
two distinctly different 0-H environments in the liquid; however, as
discussed in Section 4.7 (b), there is no definitive evidence for these
distinctive environments. The apparent shoulder observed by Walrafen
(19676; Fig. 4.23 (c)) is consistent with a curve like d, and thus suggests
that d may be more nearly correct than a.

It could conceivably be argued that curve 6 or c is more nearly correct
than a or d, and that two 0-H environments are not evident in the un-
coupled stretching band because A?72 in Fig. 4.27 is larger than At^. In
this case a non-hydrogen-bonded 0-H group in the liquid would be
closer in energy to an 0—H—• 0 group than to a free 0-H group in the
vapour. Consequently the presence of non-hydrogen-bonded O-H
groups might be reflected merely by an asymmetry in the uncoupled
stretching band rather than by two distinct maxima. A small value of
A?/! is, however, difficult to reconcile with the large dielectric constant
(as well as other properties) of water. The large dielectric constant
implies a strong angular correlation of molecules, or in other words,
a large value of At^.

The temperature and pressure dependence of the energy curve for
rotation is an interesting topic for speculation. The decrease in activa-
tion energy for dielectric relaxation and viscous flow as water is heated
suggests that the height of the maximum above the minima (AC^ in
Fig. 4.27) decreases with increasing temperature. In agreement with this,
the frequency of the VL mode (Section 4.7 (c)) decreases as water is
heated, indicating that the slope of the potential energy curve in the
regions of the minima becomes less steep. Since compression of water
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at temperatures below 30 °C lowers the viscosity, pressure may have a
similar effect.

(6) The V-structure of water: a summary
The vibrationally averaged structure, or V-structure, of a small region

in liquid water is the average arrangement of molecules over a period of
time longer than that required for intermolecular vibration, yet shorter
than that required for diffusive motions of molecules. The V-structure
persists in a small region on the average for a time TD before being inter-
rupted by the translation or reorientation of a molecule; this time
depends on the temperature and pressure. The temperature dependence
of the viscosity, dielectric relaxation time, and coefficient of self-diffusion
all indicate that TD decreases when the temperature is raised. At room
temperature the relaxation times for molecular displacements are of the
order of 10~u—10~12 s, so that a molecule completes, on the average,
fewer than 100 hindered translations (VT mode) and fewer than 1000
librations (VL mode) before experiencing a reorientation or translation
to a new position of temporary equilibrium. Limited compression of
water below 30 °C, like heating, reduces the viscosity and thus apparently
shortens TD. The value of TD for liquid D20 is slightly larger than TD for
ordinary water, as shown by the longer relaxation times of D20.

Spectroscopic studies have established some basic features of the
V-structure of liquid water:

(1) The widths of the uncoupled O-H and O-D stretching bands
indicate that in the V-structure there is a considerable amount of
variation in the local environments of water molecules, as compared
with the relative uniformity of the molecular environments in a crystal
of ice I. The frequency span of these bands suggests that some nearest
neighbours are as close together as 2-75 A and others may be as far
apart as 3-10 A or more. The most probable equilibrium separation
seems to be about 2-85 A. The smaller separations are probably associa-
ted with strong hydrogen bonds such as those in ice, whereas the larger
separations are probably associated with highly distorted, or even
broken, hydrogen bonds.

(2) The contours of the uncoupled bands suggest that the V-structure
does not contain a small number of distinctly different molecular environ-
ments. These contours, each relatively smooth and having a single
maximum, would seem to show that the V-structure contains a wide
distribution of environments rather than a small number of distinct
environments. The uncoupled stretching bands do not, however,
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provide a definite proof that non-hydrogen-bonded O-H bonds are
absent from water. Hence, although water contains a large variety of
hydrogen-bonded molecules, some distinctly different molecules with
non-hydrogen-bonded O-H groups may be present as well.

(3) The uncoupled stretching bands indicate that heating slightly
increases the variety of molecular environments in the liquid and de-
creases the mean hydrogen-bond strength. Water near 0 °C has a greater
variety of molecular environments than does ice, as shown by the greater
widths of its uncoupled stretching bands. The frequency of the stretching
band in water is higher than that in ice, indicating that hydrogen bonds
in the liquid are, on the average, weaker. Moreover, the frequencies of
the VL and VT bands of water are lower than those of ice, showing that
hydrogen bonds are more easily distorted in the liquid. All these differ-
ences are accentuated by increasing the temperature: the uncoupled
stretching bands become broader, and hydrogen bonds become weaker
and more easily distorted.

Many important questions about the V-structure of water remain
unanswered. Very little is known about the distribution of hydrogen-
bond angles in the V-structure or about the effect of pressure on the
V-structure. The question of the presence of distinctly different non-
hydrogen-bonded O-H groups is, of course, also unsettled.

Finally, it is worth noting that we may think of the V-structure as
having physical properties which differ from those of the D-structure.
If we could make thermodynamic and other measurements during a
time of the order of TD, the equilibrium positions of molecules would be
essentially fixed, and the properties we would measure would be charac-
teristic of the V-structure. Only the vibrational contribution (~ 10
cal/mol/°C) to the heat capacity would be observed, because there would
not be time enough for the appearance of the configurational contribu-
tion, which arises from changes in the positions and orientations of
molecules. Similarly, only the vibrational contributions to the com-
pressibility and coefficient of expansion would be evident. The dielectric
constant would have its high-frequency value, e^.

(c) The D-structure of water: a summary
The diffusionally averaged structure, or D-structure, of liquid water is

the average arrangement of molecules around an arbitrary 'central'
molecule over a time interval that is long compared to TD. As noted in
Section 4.1 (a), the D-structure may also be regarded as the space-
average of the V-structures about many different 'central' molecules.
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Both the time-average and the space-average views are useful in inter-
preting experimental data.

Adopting the space-average view of the radial distribution function
(Fig. 4.4), we may say that at any given instant many molecules in liquid
water near the freezing-point have relatively high concentrations of
neighbours at distances of about 2-9 A, 5 A, and 7 A. As discussed in
Section 4.2 (a), this sequence of distances, and the area under the first
peak of the radial distribution function, suggest that many molecules
participate in hydrogen-bonded networks of tetrahedrally coordinated
molecules, somewhat like the network found in ice I. The breadths of
the peaks in the radial distribution function show, however, that the
V-structures around different central molecules vary much more in
water than they do in ice. Many molecules in liquid water also have
neighbours at a distance of about 3-5 A, a separation that is not found
in ice I. These may be neighbours that are not, at the instant we are
considering, part of the hydrogen-bonded network, or they may be
members of one of the distorted configurations of hydrogen bonds
mentioned on p. 171. As water is heated above room temperature, the
densities of neighbours near 5 A and 7 A gradually decrease, until at
200 °C the density at all distances greater than 6 A is essentially equal
to the bulk density of the liquid. This shows, of course, that thermal
agitation distorts or breaks down the hydrogen-bonded networks.

The large dielectric constant of water is a further indication that, at
any given instant, many molecules in water participate in hydrogen-
bonded networks. Indeed, all successful theoretical treatments of this
property have been based on the assumption that most of the molecules
are four-coordinated at room temperature. Among other properties
that indicate that a significant proportion of the 0-H groups in the
liquid are involved in hydrogen bonds are: the large NMR chemical
shift of the proton relative to the proton in water vapour, the anomalously
high proton mobility in the liquid, and the low quadrupole coupling
constant of the deuteron in heavy water.

Thermodynamic properties measured by the usual methods are
characteristic of the D-structure of the liquid. The value of a given
property (say the heat capacity or the compressibility) may be thought
of as having two contributions: a vibrational contribution associated
with the changes in the vibrational amplitudes of molecules that are
induced by compression or heating, and a configurational contribution
associated with the changes in the structure of the liquid. Changes in
the liquid structure occur by molecular displacements; these have
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periods of ~ 10~12 s, so that the configurational contribution is apparent
if the measurements take longer than this to perform. It seems likely
that the configurational contributions arise mainly from changes in the
potential energy of hydrogen bonding as water is heated or compressed.
Calculations suggest that the configurational contributions to the heat
capacity and internal energy are of the order of half of the observed
values of these properties. The coefficient of expansion is another
property that may be considered to have vibrational and configurational
contributions. As water is heated the (anharmonic) intermolecular
vibrations increase in amplitude, thereby tending to expand the liquid.
This, of course, is the vibrational contribution to the expansion co-
efficient. At the same time, as the temperature is raised there is greater
distortion of hydrogen bonds and this tends to produce a decrease in
volume. The negative configurational contribution competes with the
positive vibrational contribution to produce the observed minimum in
the volume at 4 °0.



5. Models for Liquid Watert

To develop a rigorous, classical theory of the thermodynamic proper-
ties of water it is necessary to solve two major problems:

(1) An accurate potential function for the interaction of a group of
water molecules is required to specify the Hamiltonian, H, of the
system. No such potential function is yet available (see sections
2.1 and 3.6(6)), but research in this area is active and better
potential functions may be developed before long.

(2) The classical partition function

must be evaluated, where N is the number of molecules and R
and p are the molecular spatial coordinates and momenta. This is
a formidable mathematical task. Nevertheless, notable progress
has been achieved in this area for simple liquids such as argon (see,
for example, Rice and Gray 1965), and similar methods may even-
tually be applicable to water.

These problems are so difficult, however, that no serious attempt has yet
been made to develop a rigorous theory of liquid water.

Most theories of water are based on a less fundamental but more
tractable approach:

(1) A model for water is postulated on the basis of some experimental
evidence and some intuition.

(2) The model is translated into mathematical terms. Often a simple
partition function containing several variable parameters is
devised.

(3) The thermodynamic expressions derived from the partition
function are fitted to experimental properties by varying the
parameters.

f Reviews and discussions of models for liquid water include, among others, those of
Chadwell (1927), Nemethy and Scheraga (1962), Frank (1963, 1965), Kavanau (1964),
Davis and Litovitz (1965), Wicke (1966), Berendsen (1967), and Davis and Jarzynski
(1967-8).
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A good fit suggests that the postulated model reflects some elements of
the true structure of water; it does not prove that the model is an
accurate one. Indeed, as we shall see in Section 5.2 (b) below, several
models that appear to be quite different from one another have been
fitted by such methods to experimental data. Conversely, a poor fit does
not prove that a conceptual model is an inaccurate description of water.
A good conceptual model could conceivably suffer distortion when it is
introduced into the terms of an approximate partition function.

For these reasons, in discussing models for water, we shall be interested
primarily in their consistency with spectroscopic and other data, and
secondarily with their ability to reproduce thermodynamic functions.
It will be assumed that the reader is familiar with the material on models
in Section 4.2 (6).

5.1. Small-aggregate models
A class of models for water, once widely accepted but now of only

historical interest, depicted the liquid as an equilibrium mixture of
small aggregates of water molecules. Several versions (see Chadwell
1927) treated the liquid as a mixture of HaO, (H20)2, called dihydrol,
and (H2O)3, called trihydrol; another version (Eucken 1946) treated
water as a mixture of H20, (H20)2, (H20)4, and (H20)8. The dependence
of properties on temperature, pressure, and solute concentration was
explained by changes in the equilibrium concentrations of the aggregates
and for many properties a good fit to experiment was achieved. Dorsey,
in his monograph on water (1940, p. 168), summarized the properties
of dihydrol and trihydrol in tabular form.

Bernal and Fowler (1933) criticized the small-aggregate models as
being 'conceived too much in the manner of molecular chemistry', and
as giving an inadequate description of the spatial arrangement of
molecules in the liquid. They laid the foundation for most subsequent
models by proposing that water is better described as an extended but
irregular four-coordinated arrangement of molecules (Section 4.2 (a)].
They found that this arrangement could explain most of the same
properties that the older models dealt with, and in addition could
account for the X-ray diffraction pattern and the properties of water
that are unusual when compared with other molecular liquids.

More recent data confirm that small-aggregate models are not correct.
Spectroscopic results (Section 4.7 (b)) show that water is not composed
of a small number of distinctly different molecular species. The small
spread of dielectric relaxation times (Section 4.6 (a)) shows, moreover,
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that even if small aggregates of different size exist in water, they do not
cohere longer than 10"11 s. Small-aggregate models cannot account for
the strong angular correlation of molecules which, as shown by the high
dielectric constant of water, exists in the liquid.

5.2. Mixture and interstitial models
(a) Basic premiss

The basic premiss of most mixture models is that liquid water is
composed of a small number of distinctly different molecular species.
In the terminology of the previous chapter, mixture models depict the
V-structures in the immediate neighbourhoods of different central
molecules as being of a small number of distinguishable types. Inter-
stitial models are a class of mixture models in which one of the species
forms a hydrogen-bonded framework, and the other species resides in
cavities that exist in this framework. The small-aggregate models
mentioned in the previous section are another class of mixture models.

In mathematical treatments of mixture models, each species of water
molecule is considered to occupy a discrete energy level, commonly
called a state. Owing to thermal agitation, molecules experience fre-
quent transitions between these states, and consequently over a period
of time all molecules are equivalent. A change in the temperature or
pressure is supposed to shift the relative populations of the states; the
thermodynamic properties of the liquid are explained in terms of these
shifts.

Frank (1958, 1963, 1965) advanced theoretical arguments in support
of mixture models for water. He noted that Coulson and Danielsson
(1954), in a valence-bond theory of the hydrogen bond, found that the
following resonance structure contributes to the mutual attraction of a
pair of water molecules.

Frank reasoned that the partial negative charge on 0A should attract
the protons of other water molecules, and he concluded that the forma-
tion of one hydrogen bond promotes the formation of other hydrogen
bonds in its vicinity. Conversely, the breaking of a hydrogen bond
fosters the breaking of neighbouring hydrogen bonds. The idea that
formation and breaking of hydrogen bonds are co-operative processes
led Frank and Wen (1957) to postulate the existence of 'flickering
clusters' of water molecules in the liquid (Section 4.6 (a)). Furthermore,
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they suggested that the hydrogen-bonded molecules in the clusters are
distinctly different from the non-hydrogen-bonded molecules outside the
clusters.

Other considerations indicate that the strength of hydrogen bonding
between water molecules is increased by co-operative effects. A com-
parison of the second and third virial coefficients of steam (Section
2.1 (6)) suggests that some attractive force exists among three water
molecules that is not present between two. In addition, calculations on
the lattice energy of ice (Section 3.6 (c)) indicate that the mutual polariza-
tion of water molecules contributes to their cohesion. In view of this
evidence, it seems likely that Prank is correct in concluding that co-
operative effects have an important influence on the strength of hydrogen
bonding between water molecules. The second conclusion, however,
that a small number of distinctly different molecular species are present
in water, does not necessarily follow from these considerations. In fact,
evidence summarized in Sections 4.7 (6) and 4.8 (b) suggests that this
second conclusion is not correct.

(6) Details of several models
The simplest mixture models for water are those in which only two

species are postulated. Properties of the liquid are then explained in
terms of the equilibrium

In most of these two-state models, the bulky species is considered to be
an 'ice-like' cluster of hydrogen-bonded molecules, and the dense species
is assumed to be more closely packed and to be of higher energy. Thus
as the above equilibrium moves to the right, the population of molecules
in the state of higher energy increases, and the volume of the liquid
decreases. The values of AF and AE for the equilibrium, as well as the
mole fraction of each species, are estimated from one or two observed
properties of the liquid. The parameters for several two-state models
are summarized in Table 5.1.

Two interstitial models are also listed in Table 5.1. One is the model of
Danford and Levy (1962) and Narten et al. (1967) mentioned in Section
4.2(6); the other is Pauling's 'water hydrate' model. Pauling (1959)
suggested that the configuration of molecules in liquid water might
resemble the clathrate compound, chlorine hydrate. In this model,
groups of 20 hydrogen-bonded water molecules form open, penta-
gonal dodecahedra in which non-hydrogen-bonded water molecules
reside. The dodecahedra can be packed together in ways that allow

855339 S



TABLE 5.1

Principal characteristics of mixture and interstitial models for water"

Authors No. of
species

Hall (1948) 2

Grjotheim and Krogh-Moe 2
(1954)

Smith and Lawson (1954) 2
Litovitz and Carnevale 2
(1955)
Wada (1961) 2

Davis and Litovitz (1965) 2

Davis and Bradley (1966) 2

Pauling (1959); Frank and 2
Quist (1961)

Danford and Levy (1962);
Narten et al. (1967)

Nature of species Mole fraction Difference in
of less (least) energy of the
dense species species
at 0° C (kcal mol-1)

(1) 'More ice-like' ~ 0-7
(2) 'More like that of a simple

close-packed liquid'
(1) Distorted, ice-like structure 0'44 2-6
(2) Non-hydrogen-bonded,

close-packed structure
Same as Hall (1948) 0-5 2-6
Same as Hall (1948) 0-3 0-87

(1) An 'icy state ' of lower den- 0'42 2-5
sity having a quasi-crystal-
line ice structure

(2) A 'packed state'
(1) An open, ice-like arrange- ~ 0-6 . — '2-7

ment of hexagonal rings
(2) A close-packed arrangement

of hexagonal rings in which
each molecule is hydrogen-
bonded to two others

Same as Davis and Litovitz 0-61f) 2-9
(1965) but for DaO

(1) Hydrogen-bonded, 0-82* ~ 2-2
clathrate-like framework

(2) Interstitial H2O molecules
that occupy some of the
cavities

(1) Anisotropioally expanded, 0'82(>

ice-I-like lattice
(2) Interstitial H2O molecules

that reside in some of the
cavities

Difference in Data used in
volume of the determining
species parameters
(cm3 mol"1)

8-5 Ultrasonic
absorption

2'9 Molar volume

> 8-0 Velocity of sound
8-4 Ultrasonic

absorption
2-8 Molar volume

^-< 7 Radial distribution
function and molar
volume

7'2& Radial distribution
function and molar
volume

Molar volume and
chlorine hydrate
structure

Molar volume and
radial distribution
function

Type of
model



Nemethy and Scheraga 5
(1962)

Nemethy and Scheraga 5
(1964)
Marchi and Eyring (1964) 2

Vand and Senior (1965) 3

Jhon etal. (1966)

The 5 species are H2O molecules 0-54° 2-6d

forming 0, 1 , 2, 3, and 4
hydrogen bonds with neigh-
bouring molecules
Same as Nemethy and Scheraga 0-54^>c 3-1^
(1962), but for D20
(1) Four-coordinated, hydro- 0-98 6-9

gen-bonded framework
(2) Freely rotating monomers

in some cavities
The 3 species are water mole- 2-8e

cules whose 0— H groups par-
ticipate in 0, 1, or 2 hydrogen
bonds. Molecules of the same
species are not confined to a
discrete energy level, but rather
to a band of levels
(1) A cage-like structure of 0-48

about 46 molecules, having
the density of ice I. Mostly
destroyed at temperatures
above 4 °C

(2) A denser, ice-III-like struc-
ture, also hydrogen-bonded.
Both structures contain
'fluidized vacancies'

3 • 6 Thermo dynamic
functions

3-5 Thermodynamic
functions

0-5 Thermodynamic
functions

Thermodynamic
functions

2 • 0 Thermodynamic
functions

0 All entries refer to 0 °C unless noted otherwise.
* At 4 °C.
c Total mole fractions of 4-, 3-, and 2-bonded species. These are assumed by Nemethy and Scheraga to have the same molar volumes.
<* Energy difference of 4-bonded and 0-bonded species.
e Energy difference of 2-bonded and 0-bonded species.
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them to be linked by hydrogen bonds. If they are packed as in chlorine
hydrate (Pauling and Marsh 1952), 46 molecules in each unit cell form
the hydrogen-bonded framework, and the framework encloses 8 cavities.
Assuming that each cavity contains an H2O monomer, the calculated
density of this structure is 0-98 g cm~3, nearly that of liquid water.
Pauling noted that a dodecahedral complex of 21 water molecules
contains 30 intact hydrogen bonds, or 71-5 per cent of the maximum
possible number; no complex of 21 molecules cut out of an ice I lattice
contains as many as 60 per cent of the maximum possible number.

The thermodynamic implications of Pauling's model were explored by
Frank and Quist (1961). By allowing a variable degree of occupancy of
the interstitial sites they found they could account for the P-V—T
properties up to 30 °C and 2000 kg cm~2. Since the degree of occupancy
changes only slightly with temperature, the configurational heat
capacity is only about 0-55 cal/mol °C, and thus the model does not
account for the large heat capacity of water. Frank and Quist concluded
that, although structures of the type proposed by Pauling may exist in
water, the liquid cannot be composed entirely of framework and inter-
stitial molecules. The kinetic properties of water show that V-structures
in the liquid are constantly changing, and thus at any instant some frac-
tion of the molecules must be in transition between framework and
interstices. Frank and Quist suggested that these transitional structures
are responsible for most of the configurational heat capacity.

The remaining models in Table 5.1 are those for which more detailed
mathematical descriptions have been developed. For each of these
models a partition function was devised. In most cases the difference in
energy of the states was taken as a variable parameter, and then deter-
mined by fitting the calculated thermodynamic properties to experi-
mental data. Vand and Senior (1965), however, assumed energy spacings
consistent with the spectroscopic study of Buijs and Choppin (1963;
Section 4.7 (d)). The calculation of Vand and Senior (1965) also differs
from the others in that the molecules are not confined to discrete energy
levels, but are spread in Gaussian energy bands around the mean energy
for each of the species. They postulate three bands, corresponding to
H20 molecules that form 0, 1, and 2 hydrogen bonds; the spread within
each band is meant to represent the spread of hydrogen-bond energies
and molecular coordination numbers in the liquid. This model thus
incorporates characteristics of both the strict mixture models, in which
a small number of distinguishable molecular species is assumed, and the
models discussed in Section 5.3 in which a continuous spread of molecular
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environments is assumed. Fig. 5.1 shows the energy states assumed in
several models for water.

The calculated thermodynamic properties associated with these
models are summarized in Table 5.2. Each of the models is able to
reproduce the experimental thermal energy functions fairly well, even

FIG. 5.1. The molecular energy states in liquid water as assumed in several models
for the liquid. The experimental internal energies of liquid water at 0 and 100 °C and
of water vapour at 100 °C are shown at the left for reference. In Vand and Senior's
model, the energy states occupied by molecules are distributed in three Gaussian bands
about the mean energies, which are shown by lines; thus the energy states accessible to
molecules extend from —oo to +<a. The energy states accessible to molecules in Pople's

model extend from 0 to +00.

though each is a different description of the V-structure of water. This
fact in itself suggests that it is dangerous to draw detailed conclusions
about the V-structure of water on the basis of calculations from para-
metrized models; the mathematical flexibility permitted by ten or
more parameters seems to be sufficient to fit numerous models to the
experimental thermodynamic functions, and thus a good fit is not
sufficient proof that the model is correct. Nevertheless, the ability of the
models listed in Table 5.2 to describe the thermal energy and P-V-T
properties probably shows that they all reflect some of the basic charac-
teristics of the structure of water. They all, for example, provide for a
large configurational heat capacity (by assuming that hydrogen bonds
are broken as water is heated), and those which reproduce the experi-
mental minimum in the molar volume provide for both configurational
and vibrational contributions to the coefficient of expansion.

Let us consider one of these models—that of Nemethy and Scheraga (1962,
1964)—in greater detail. These authors assumed that every water molecule



TABLE 5.2

Calculations of thermodynamic properties of water from mixture models'^

Authors

N&nethy and Scheraga
(1962)

Marchi and Eyring
(1964)

Vand and Senior (1965)

Jhon et al. (1966)

Number of
adjustable
parameters

2 in addition to
9 vibrational
frequencies

14

12 plus 6 spectro-
scopie constants

9

Quality of fit of calculated properties to experiment

E, S, A within 3-8% over 0-100° C range.
Cv 18% too high at 0° C

28% too low at 100 °C

Good fit of S and A. Cv too low (= 10
cal/mol °C)

E,S,A, and Cv within 1-5% over 0-100 °C
range

Excellent fit of S and A over range 0-150
°C. Cy within 12-3% over range 0-100 °C

P—V—T properties at atmospheric pressure fitted
with several (about 6) additional parameters.
V shows minimum at 4 °C and is within 0-5% of
experimental value between 0 and 70 °C

Good fit of vapour pressure over range 0—140 °C.
V within 0-3 cm3 mol"1 over range 0-180°C.
Does not show minimum at 4 °C

V within 1 % over range 0-150 °C. Vapour pressure
within 3-2% over same range

See Table 5.1 for brief descriptions of the models.
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occupies one of five energy levels, depending on whether it forms 0, 1, 2, 3, or 4
hydrogen bonds to neighbouring molecules. The molecules are assumed to be
either in compact clusters, or unbonded, but not to form small polymeric units.
By building models, Nemethy and Scheraga determined expressions for the
fractions of 4-, 3-, and 2-bonded molecules in the clusters in terms of na, the
average number of multiply bonded molecules in a cluster, and yit the fraction of
all molecules in clusters which are singly bonded. They then described their
model by a partition function of the form

where
Xu is the mole fraction of unbonded (0-bonded) molecules,
N is Avogadro's number,
Xi is the mole fraction of the ith species,
JEj is the energy level of the ith species,
d(ntt> 2/i> -S"u) is a combinatorial factor = Nl/(Nt! N3! JV2! JVX! JVJj!), JVjbeing
the number of molecules of the •ith species per mole of water, and ft is
the weighting factor that describes the degrees of freedom of the lith
species.

The form of/4 is

/( =/v for i = 1,2,3,4 and

/i = /t/r/v for the unbonded molecules,

where

and where s = 6 for i = 1, 2, 3, 4, and s = 2 for i = u;

In these expressions, the subscripts t, r, and v refer to translation, rotation, and
vibration, respectively; a, m and / are the symmetry number, the mass, and a
moment of inertia of the water molecule. Vf is a variable parameter called the free
volume.

Nemethy and Scheraga evaluated the partition function by equating it to its
maximum term, as described in their paper. The thermodynamic functions are
given by the well-known expressions, A. = — k T l n Z , etc. Then by varying the
free volume Vt and the spacing between the levels (and also by choosing reasonable
values for the frequencies i/y) they fitted the calculated thermal energy functions
to experimental data; the fit they achieved is described in Table 5.2.

In calculating the P—V—T properties of the liquid, Nemethy and Scheraga
assigned to the clusters the molar volume and coefficient of expansion of ice I.
Then the volume and coefficient of expansion of the non-hydrogen-bonded
molecules were determined by fitting the total molar volume to the experimental
points at 0, 4, and 25 °C; these quantities were found to have values comparable
with those of polar liquids. The mole fraction of clusters, determined previously
by fitting the thermal energy, was used in this procedure. The calculated molar
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volume exhibits a minimum at 4 °C; moreover, when the procedure was applied
to D2O (Nemethy and Scheraga 1964) the minimum at 11-2 °C was reproduced to
within 1 °C, although no new parameters other than the mole fraction of clusters
in D2O were introduced.

(c) Consistency of mixture models with experimental data

The basic premiss on which most mixture models are founded—that
liquid water is a mixture of a small number of distinctly different species
—is not in accord with experimental data. Studies of the uncoupled
stretching bands (Section 4.7 (&)) show that the liquid contains a variety
of molecular environments, and thus that water cannot be correctly
described in terms of a small number of discrete states. Though the
uncoupled stretching bands do not prove the total absence of distinctly
different non-hydrogen-bonded groups in water, they do indicate that
the liquid is characterized by a wide distribution of species, and models
that take no account of this cannot be accurate representations of
liquid water.

Even if some distinctly different molecular species do exist in water,
the common verbal descriptions of them are inaccurate. 'Ice-like'
clusters cannot possibly be like ice. If significant numbers of 0-H groups
in water had environments similar to those of 0-H groups in ice, one
would expect to observe a sharp maximum near 3300 cm-1 in the un-
coupled 0-H stretching band. No such peak is observed. Furthermore,
the ease with which pure water can be supercooled shows that ice-like
nuclei do not exist in the liquid (for example, Koefoed 1957). Evidence
against a significant fraction of 'vapour-like' molecules in liquid water
at room temperature has been assembled by Stevenson (1965). He
formulated several operational definitions for vapour-like molecules
in the liquid, and showed that by each of the definitions the fraction of
vapour-like molecules is less than 0-01 over the temperature range
0-100 °C. One of his definitions was based on the relative vacuum ultra-
violet absorption of liquid and vapour; another was based on the infra-
red absorption of a dilute solution of H20 in CC14.

A frequently cited justification for adopting a mixture model is that,
with proper choice of parameters, a partition function based on the
model can reproduce a number of equilibrium properties of the liquid.
It should be noted, however, that the equilibrium properties depend on
the average energy of the assembly of molecules. A correct average
energy can be computed from a judiciously selected set of discrete
energy levels, even if the true energy spectrum is continuous. A far
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better criterion for judging a model of the V-structure of water is that
the model is consistent with what is known from spectroscopy about the
molecular environments in the liquid. Most mixture models are not
acceptable by this criterion; hence it is illogical to draw conclusions from
them about molecular parameters such as the average cluster size or the
number of broken hydrogen bonds in the liquid.

5.3. Distorted hydrogen-bond models
The distorted hydrogen-bond model of Pople (1951) and the closely

related random-network model of Bernal (1964) were described briefly
in Section 4.2 (6). In these models, hydrogen bonds are regarded as
distorted to varying degrees, rather than as either intact or broken as in
mixture models. Water molecules in the liquid, like those in the ices, are
considered to be four-coordinated; but the networks of linked molecules
in the liquid are depicted as irregular and varied, in contrast to the
orderly networks of a few basic types that are found in the ices. Bernal
(1964) believes that five-membered rings are a frequent configuration in
the liquid, but that rings containing four, six, seven, or even more
molecules are also part of the networks.

These distorted hydrogen-bond models have received less attention
to date than have mixture and interstitial models. Pople and Bernal
showed that these models are consistent with the radial distribution
function of water (Section 4.2 (6)), and Pople demonstrated that his
model can account for the dielectric constant of water (Section 4.4 (a))
and for the decrease in volume of ice I upon melting. In Section 4.3 (a)
a simple calculation is given that suggests that such a model may
be able to account for the heat capacity and thermal energy of
water.

Pople (1951) showed how one might estimate the average angle of
distortion of hydrogen bonds in water. He assumed that the mutual
orientation of two water molecules in the liquid is determined only by
the energy required to distort the hydrogen bond between them. He
described this energy by a 'hydrogen-bond bending-force constant' Tc^,
which has been defined in eqn (4.2) and Fig. 4.7. Making the further
assumption that the distortion of hydrogen bonds may be treated by
classical statistics, Pople estimated the average angle (/> between the
0-H bond (or lone-pair) direction and the 0—• 0 axis of two hydrogen-
bonded neighbours (see Pig. 4.7). Noting that the energy of distortion
for small angles of bend is given by — k^ cos (j>, he wrote the probability
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of an angle <f> being between (f> and </>+d^ as

Thus the mean value of cos <j>, cos <f>, is given by

As noted in Section 4.2 (6), Pople derived a value of k^ (= 3-78 X 10~13

erg/radian) from his study of the radial distribution function; this leads
to values of 26° and 30° for cos-1(cos<ji) at 0 and 100 °C respectively.

The distorted hydrogen-bond models seem to be in accord with most
of what is known about the structure of water from experiment. The
range of molecular environments postulated in these models is consistent
with the large half-widths of the uncoupled stretching bands of water
(Section 4.7 (6)). Extensive hydrogen bonding, an intrinsic part of these
models, can account for the large dielectric constant and energy of
vaporization of water, the abnormal proton mobility of the liquid, and
the low quadrupole coupling constant of deuterons in liquid D20. One
observation that is difficult to reconcile with these models is the small
spread of dielectric relaxation times found for water; but it should be
noted that this observation is equally hard to reconcile with mixture and
interstitial models. Some authors (for example, Nemethy and Scheraga
1962) have objected to Pople's model, arguing that a liquid so extensively
hydrogen-bonded would be highly viscous. This argument presumes
that a broken hydrogen bond in the liquid is fundamentally different
from a highly distorted bond, or in other words, that curves b and c of
Fig. 4.27 are better descriptions of the energy of molecular rotation in
water than are curves a and d. As mentioned in Section 4.8 (a), present
evidence suggests that there is no fundamental distinction between
broken and highly distorted hydrogen bonds in liquid water. Another
objection to Pople's model was based on qualitative arguments to the
effect that highly distorted hydrogen bonds are unlikely in liquid water
(for example, Frank 1958). Such arguments have less force now that
highly distorted hydrogen bonds have been discovered in the high-pres-
sure ices (Section 3.2). Ices II, III, V, and VI all contain distorted
hydrogen bonds, yet have internal energies only several tenths of a
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kcal mol^1 larger than ice I; liquid water at 0 °C has an internal energy
1-44 kcal mol"1 larger than ice I.

The present authors believe that distorted hydrogen-bond models
merit further investigation. Pople's 'hydrogen-bond bending-force con-
stant' is clearly too simple to give a good representation of the forces
between water molecules. Calculations based on more realistic potential
functions would be extremely interesting.



Addendum

The water molecule
Properties from experiments (Section l.le)

Ben Aryeh (1966) determined a value for the derivative of the molecu-
lar dipole moment with respect to valence angle (fyi/3a) from the
integrated intensity of the v2 infra-red band.

Spin-rotation constants for the hydrogen nuclei in H2O, HDO, and
D2O were reported by Bluyssen et al. (1967) and Treacy and Beers
(1962). Stevenson and Townes (1957) measured the quadrupole coupling
constant of the 170 nucleus in HD170, and from this the gradient of the
electrostatic field at the oxygen nucleus can be derived.

Calculation of properties (Section l.2d)
Harrison (1967) and Aung et al. (1968) calculated numerous properties

of the water molecule from accurate wave functions. Harrison used the
wave function of Whitten et al. (1966) mentioned in Section l.2d. The
contributions to molecular properties arising from the zero-point vibra-
tions of the nuclei were evaluated by Kern and Matcha (1968). Arrighini
et al. (1967) calculated the components of the molecular polarizability
tensor.

Ice
Structure and properties of the ices (Sections 3.1, 3.2, 3.3, 3Ad, 3.5c)

Brill and Tippe (1967) measured the lattice parameters of ice I over
the temperature range 15-200 °K by X-ray methods, and derived values
for the coefficients of expansion along the a- and c-axes. Calculations
of the residual entropy of ice associated with hydrogen atom disorder
were extended by Lieb (1967).

The ordering of hydrogen atoms in ice III upon cooling below — 65 °C
was studied by Whalley et al. (1968). They proposed a new designation
(ice IX) and specific hydrogen positions for the ordered structure. Kell
and Whalley (1968) found that older thermodynamic data which had
suggested a disorder-order transition at higher temperatures were in
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error. Ghormley (1968) reported new measurements of the thermal
properties of vitreous ice and ice Ic.

Barnaal and Lowe (1967) measured the NMR second moment for
protons in ice I, and concluded that its magnitude is consistent with
an 0—H bond length of 1-00 A and an H—0—H angle of 109-5° for
H2O molecules in the crystal. The quadrupole coupling constant of 170
in D20 ice I was determined by Waldstein and Rabideau (1967) and
compared to the corresponding quantities for the liquid and vapour
phases.

Ramseier (1967) studied the self-diffusion of tritium in Ice I, and
concluded that entire water molecules diffuse by a vacancy mechanism.

Hydrogen bonding (Section 3.6)
A detailed discussion of the experimental techniques used to study

hydrogen bonding in solids has been given by Hamilton and Ibers (1968).
Morokuma and Pedersen (1968) performed a quantum mechanical

calculation of the interaction energy of two water molecules. In the most
stable configuration, one 0—H group of the donor molecule is collinear
with the twofold axis of the acceptor molecule; the binding energy is
12-6 kcal mol"1 and the equilibrium O—• 0 separation is 2-68 A. Weiss-
mann et al. (1967) discussed the results of several previous calculations
of the hydrogen bond energy in ice.

Liquid water
Vibrational spectroscopy and general discussions of water structure (Sections

4.7, 5.2, 5.3)
Walrafen (1968a) extended his Raman spectral studies of the un-

coupled stretching bands to the 0—H bond, and emphasized the differ-
ences between his results and those of Wall and Hornig (1965). In a
detailed review of his work on water, Walrafen (19686) interpreted the
temperature dependence of the Raman spectrum in terms of an equili-
brium among various species of water molecule. He explained intensity
changes of both the stretching and intermolecular bands in terms of a
step-wise breakage of hydrogen bonds during heating, and showed that
this breakage can account for the configurational heat capacity of water.

Luck (1967) discussed the correlation of spectroscopic and thermo-
dynamic properties from a different point of view. His paper is followed
by a discussion of the structure and properties of water to which Dr. Luck,
Prof. H. S. Frank, Prof. M. Magat, and a number of others contributed
noteworthy comments.
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Stevenson (1968) reported further observations of the UV and infra-red
absorption of water. He concluded that his results are not compatible
with 'the description of liquid water in terms of a discrete number of
sharply defined hydrogen-bonded species'.

Kamb (1968) reviewed studies of the high pressure ices, and considered
the extent to which configurations of water molecules similar to these
structures might be present in liquid water. His thorough discussion
covers thermodynamic, electrical, and spectroscopic properties, among
others.

Thermodynamic properties (Section 4.3)
Vedam and Holton (1968) gave tables of P-V-T data for liquid water

at temperatures between 0 and 100°C and pressures of 1 to 1000 kg
cm-2, and at 30 to 80 °C for pressures of 1 to 10000 kg cm-2. These
data were derived from accurate measurements of the pressure and
temperature dependence of the sound velocity by Wilson (1959) and
Holton et al. (1968). The data are in good agreement with those of
Bridgman quoted in Chapter 4. Vedam and Holton also tabulated
adiabatic and isothermal compressibilities, thermal expansion co-
efficients, Cp, and Cp/Cp for the temperature and pressure ranges given
above.

Other properties (Sections 4.3, 4.46, 4.56)
In a paper on the theory of light scattering from water, Litan (1968)

showed that the Einstein-Smoluchowski-Cabannes expression (eqn
(4.19)) underestimates the amount of scattering, but that the discrepancy
is within the range of experimental error.

Florin and Alei (1967) measured the 170 NMR chemical shift in
liquid H2

170.
Kuhns and Mason (1968) reviewed studies on the supercooling and

freezing of small water droplets.

Models for liquid water (Section 5.2)
A two-state interstitial model for water was developed in a series of

articles by Gurikov (1965, 1966) and Vdovenko et al. (1966, 1967).
Perram and Levine (1967) criticized the derivation of the combina-

torial factor in Nemethy and Scheraga's treatment of the statistical
mechanics of water.
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in ice I, 107-10.
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Dispersion forces, see Intermolecular
forces.

Displacements of molecules in liquid, 205,
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Dissociation energy, 3, 4.
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in ice I, 118-19.
in liquid, 224.
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ice I, 74.
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and experimental techniques, 155, 163,

189.
nature of, 193, 251.
and radial distribution, function 168, 252.

Einstein—Smoluchowski expression, 201,
204, 270.

Elastic properties of ice, 105, 142.
Electric field:

in ice, 110.
Electric field gradient:

at D nucleus in vapour, 15.
in D2O ice, 136.
at O nucleus in vapour, 15-16, 136-7.

Electrical properties :
ice, 105-20.
liquid, 189-94.
water molecule, 12—17.
See also Dielectric constant, Dipole

moment, Conductivity.
Electron density :

of molecule, 26, 27.
Electron diffraction:

ice Ic, 91.
vapour, 11.

Electronic binding energy, 3.
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Electrostatic forces, 38; see also Inter-
molecular forces.

Energy:
of activation for dielectric relaxation,

113, 117.
of activation for viscous flow, 223.
configurational in liquid, 180-2.
of deuterium bond in ice, 139.
differences among the ices, 95-7.
of formation, 2.
of hydrogen bond in ice, 137-41.
of hydrogen bond in liquid, 177.
thermal, 65.
thermal, of liquid, 176, 180-2.
thermal, and models for liquid, 176—82,

262.
total, of the H2O molecule, 17.
types in H2O molecule, 17-20.
vapour, 65.
vibrational in liquid, 179.
See also Enthalpy.

Enthalpy:
of activation for dielectric relaxation,

209.
changes in ice phase transitions, 95.
of formation, 3.
effusion, 94, 173.
ice I, 98-9.
of ionic dissociation, 224, 226.
liquid, 99.
of vaporization, 100, 173.
of vapour, 65.

Entropy:
of activation for dielectric relaxation,

114.
changes in ice phase transitions, 94-6.
ice, 75-6.
ice I, 99.
ice II, 82.
of ionic dissociation, 224, 226.
liquid, 99.
residual, in ice I, 103.
of vapour, 65, 66, 68.

Equations of state of steam, 63-5.
Expansibility, see Coefficient of expansion.

Fermi resonance, 129, 231, 241, 246.
in ice, 129-30.

Pick's law, 218.
Flickering clusters, 212, 256.
Force constants:

H2O in vapour, 10—11.
for H-O-H bending in ice, 141-3.
for hydrogen-bond bending, 142.
for hydrogen-bond distortion, 142.

Forces, see Intermolecular forces.
Free energy:

ice I, 99-100.

liquid, 99.
of vapour, 65, 68.

Fusion :
thermodynamic constants for, 100.

Gaussian functions, 34.
Gay-Lussac, 1.

H2
17O :
abundance, 2.
ideal gas thermodynamic functions, 66.
spin-lattice relaxation time, 216.

H2"0:
abundance, 2.
ideal gas thermodynamic functions, 66.
liquid density, 183.
self-dirmsion, 218.

HDO:
abundance, 2.
idea] gas thermodynamic functions, 66.
infra-red spectrum, 8, 135.
Raman spectrum, 234.
uncoupled spectra of ice polymorphs,

133-5.
use to uncouple vibrations, 125-6.
vibrational constants, 9.
zero-point energy, 9.

Heat capacity:
configurational, 174, 180, 256.
ice I, 98-9.
liquid, 99, 172, 174-6, 179-80.
and models for liquid, 176, 262.
origin in ice I, 101.
vapour, 66, 68-70.
vibrational, 174, 179.

Hellmann—Feynman theorem, 27, 127.
High-pressure ices, 92, 97.

and water structure, 266, 270.
See also Ice structures, and Ice.

Hindered translations, 101, 102, 124.
in ice I, 130.
in liquid, 210, 243.
and V-structure, 250.

Humboldt, 1.
Hybrid orbitals, 10, 24-7, 29, 33.
Hydrogen atoms:

disordered in ice I, 76.
field gradient at nucleus, 15.
in ice V, 86.
ordered in ice II, 80-2, 84.
ordering in ice III, 86, 268.
ordering in some ices, 85, 94—8.
positions in ice I, 74-7.

Hydrogen bonds:
bending and Raman scattering, 245.
bending in ice I, 77.
bending in liquid, 176-7, 189, 217, 246,

266.
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Hydrogen bonds (cont.):
broken, and chemical shift, 196.
broken, and effect on Raman scattering,

240.
broken, in liquid, 176, 188, 193, 237, 241,

265, 269.
calculated energy of, 145, 269.
co-operative breaking, 256—7.
distorted in high-pressure ices, 92, 97.
energy of, in liquid, 177, 179.
energy of, in ice, 187-41.
experimental energy of, in ice, 137-41.
fraction broken in liquid, 176.
in high-pressure ices, 80—3.
in ice I, 71, 92-105, 143.
length in ice I, 74.
and NMR chemical shift, 195-7.
and properties of ice, 148.
strength in liquid, 192, 195, 228, 235.
stretching and chemical shift, 197.
and term 'break', 141, 246-9.
theory of in ice, 143-7.
in vapour, 38, 47-8.
weaker in high-pressure ices, 117,

135.

Ice:
amplitudes of vibration, 77.
conductivity, 118.
crystal]ographic properties, 83.
defects in, 115—18.
densities, 83.
dielectric constant, 105.
dielectric relaxation, 112.
dipole moment, 105.
enthalpy, 101.
force constants, 142.
heat capacity, 98.
hydrogen atoms in, 74.
infra-red spectra, 82, 121-3, 131-2.
ionic dissociation, 119.
lattice energy, 137.
molecular dimensions in, 4, 74, 78.
neutron diffraction, 76.
oxygen atoms in, 71.
phase diagram, 80, 96.
phase surface, 80.
residual entropy, 75, 103, 268.
self-diffusion, 120.
space groups, 83.
specific refraction, 198.
structures, 71.
sublimation energy, 101, 140, 148.
thermodynamic properties, 92.
triple points, 59, 92-3.
unit cell dimensions, 72.
see also Hydrogen bonds, Ice structures,

and Vibrations, molecular.

Ice Ic:
formation, 90.
instability compared to ice I, 98.
relationship to ice VII, 89.
structure, 91.
thermal properties, 269.

Ice IV, 86, 93.
Ice-like molecules in liquid, 199, 264.
Ice structures, 85, 97.

comparison, 85, 91.
ice I, 70-79, 268.
ice Ic, 90-1.
ice II, 79-84.
ice III, 79, 84-6, 268.
ice V, 79, 86-7.
ice VI, 87-9.
ice VII, 89.
ice VIII, 89.
ice IX, 268.

Ideal gas thermodynamic functions, 66-7.
Infra-red spectrum:

of ice I, 122-3, 128.
ice II, 82.
ice polymorphs, 132-5.
liquid, 199, 229-31, 233.
overtones in liquid, 245.
vapour, 7-9, 47.

Intensity:
of infra-red absorption, 115, 240.
of Raman scattering, 240.

Intermolecular forces, 43—6.
Buckingham potential, 45.
collision diameter, 51.
delocalization, 144.
dipole—dipole, 40.
dispersion, 43, 144.
electrostatic, in ice, 144.
induction, 41.
Kirkwood-Muller formula, 43.
long-range forces, 38-44.
repulsive, 45, 144.
short-range forces, 44—8.
Slater—Kirkwood formula, 46.
Stockmayer's potential, 49.
summary of, 56-7.
types, 38.
in vapour, 36—57.
in vapour, a summary, 56.
and virial coefficients, 48-56.
See also Hydrogen bonds.

Interstitial models, see Models.
Ionic defects:

in ice, 118-20.
lonization potentials, 18.
Ions:

in liquid, 224-5.
Isosbestic point, 233, 238, 240.
Isotopes, 2, 244.
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Isotopes of oxygen, 1-2; see also H2
17O,

H2
18O.

I-stracture, 152, 153.

Kinks:
in dielectric constant, 190.
in other properties, 182.

Kirkwood correlation parameter, 108.
Kirkwood-Muller formula, 43, 44, 51, 53.
Kirkwood's theory of dielectrics, 106,

108-11.

Lattice energy of ice, 137-9.
Lavoisier, 1.
L-defect, see Defects in ice.
Librations, 101, 102, 124.

in ice I, 131.
in liquid, 176, 210, 242.
and V-structure, 250.

Light scattering, 200, 202.
Liquid saturation curve, 59.
London formula, 44, 51.
Lone-pairs, 24, 25, 26, 27, 31, 33, 34, 71.

molecular orbitals, 25.
Long-range forces, 38, 51.
Lorenz—Lorentz equation, 111.
Lorentz field, 198.

Magnetic properties, 15-17, 135-7, 194-7;
see also NMR.

Magnetic susceptibility, 16, 43.
Melting-point, 101.
Mixture models, see Models.
Mobility:

of defects in ice, 118.
of protons in liquid, 225-6, 266.
of protons in ice, 119.

Models for:
liquid,

characteristics, 258, 261.
and chemical shift, 196—7.
distorted hydrogen-bond, 167, 189,

192, 265.
interstitial, 165, 189, 257, 270.
and light scattering, 204.
mixture, 163, 188, 193, 256.
random-network, 170, 178, 265.
small-aggregate, 255.
and uncoupled stretching band, 236-

41.
water molecule, 21, 109.

multipole-expansion, 22, 109, 145—6.
point-charge, 21—2, 144.
quantum-mechanical, 23—34.

Molecular dimensions:
in D2O ice I, 76-7.
in vapour, 4-6.

Molecular orbital theory of H2O, 23-7.

Molecular reorientation:
in ice, 115.
in liquid, 211-14.

Moments of inertia, 4.
Multipole-oxpansion model, see Models.

Nearest neighbours:
number in liquid, 159.

Nemethy and Scheraga's model, 261.
Neutron scattering:

from ice I, 123.
from liquid, 134, 229, 231, 242.
in the study of self-diffusion, 220.

NMR:
chemical shift, 189, 194-5.
chemical shift of H2

17O, 270.
chemical shift of liquid, 154, 195-7.
detection of proton transfer, 227.
of ice I, 135-7, 269.
interpretation of chemical shift, 227.
relaxation in liquid, 214.
and self-diffusion, 121, 218.

Normal modes of vibration:
ice I, 131.
vapour, 7.

Octupole moment, 12-15, 22, 34.
O-H bond, 35.

bent, 29.
energy, 3.
length:

ice I, 76, 136.
vapour, 4.

molecular orbitals, 23.
Onsager's theory of dielectrics, 109.
Optic vibrations, 131.
Oxygen atoms:

electric field gradient at nucleus, 268.
positions in ice I, 71—4.

Pairwise additive forces, 37, 56.
Partition function, 254, 260, 263.
Phase changes, 92.

ices, 92-8.
thermodynamic constants for, 100-1.

Phase diagram, 93, 96.
Point-charge models, see Models for.
Polarizability, 15, 34, 41.

changes with temperature, 198-9.
components of, 16, 268.
independence of phase, 115.
mean in vapour, 16.

Potential functions:
for hydrogen-bonded water molecules,

141.
for interaction of two molecules, 36—46.
for molecular vibrations, 124.
role in theory of liquids, 254.
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Potential functions (cont.):
and second virial coefficient, 49—52.
and third virial coefficient, 56.
for vibrations of H2O in vapour, 10—11.

Pressure :
effect on viscosity, 222.
effect on volume, 185—6.

Pressure—volume-temperature relations,
182.

ice I, 102-5.
of the ices, 80.
liquid, 182.
and models for liquid, 188, 262.
molecular basis in liquid, 185.
vapour, 58-65.

Proton transfer:
ice, 118-20.
liquid, 225-7.

Quadrupole coupling constant, 217, 266,
268, 269.

Quadrupole moment, 12-15, 22, 34, 40.
Quantum-mechanical models for H2O, 23—

34.
Quasielastic neutron scattering, see Self-

diffusion.
Quenched ices, 79.

<r2>, 6, 14, 43.
Radial distribution functions:

definition, 156.
and distorted hydrogen-bond models,

167.
and D-structure, 168.
interpretation, 159, 163-71.
and interstitial models, 165.
for liquid HaO and D2O, 157, 160,

165.
and mixture models, 163, 265.
from Raman spectrum, 236-8.
and random-network model, 170.
and V-structures, 163.

Raman spectrum:
and broken hydrogen bonds, 240, 269.
of ice I, 122-3.
ice polymorphs, 132-5.
liquid, 154, 230, 242, 269.

Rayleigh ratio, 201-2.
Rayleigh scattering, 200—4; see also Light

scattering.
Refractive index:

ice I, 115.
in infra-red, 199.
liquid, 197.
maximum in liquid, 197.

Reorientation of molecules:
in ice, 112, 115.
in liquid, 112, 209.

Repulsive forces, 51, 89.
in ice VIII, 89.
See also Intermolecular forces.

Residual entropy, 75-6.
calculations, 75, 268.
ice, 102-3.

Roothaan's method, 32, 34.
Rotation, molecular, in vapour, 6, 20.

Screening constant, 195.
Self-diffusion:

ice I, 120-1, 269.
liquid, 217-22.

Short-range forces, 44.
Slater-Kirkwood formula, 43, 44, 46.
Slater orbitals, 33, 34.
Space groups of the ices, 83.
Species in liquid, 163, 165, 236, 240,

257, 264, 270.
Specific heat, see Heat capacity.
Specific refraction, 115.
Spectroscopy, see Infra-red spectrum,

Raman spectrum, Uncoupled stretching
bands, and Vibrations, molecular.

Spin-lattice relaxation time, 214-16.
Spin-rotation constants, 268.
States:

and liquid models, 256, 261, 264.
Static field effect, 124, 127, 129, 132.
Steam, see Water vapour, Intermolecular

forces.
Steam tables, 65.
Stockmayer's potential, 39, 50, 53.
Stretching bands, see Vibrations, mole-

cular.
Strong dimers, 53—4.
Structure of water:

definition, 150.
See also D-structure, V-structure.

Sublimation:
energy, 99-100.
ice I, 59-60.

Supercooling, 60, 264, 270.

T2O:
liquid density, 183.

Tetrahedral coordination:
arising from H2O molecule, 24, 158.
inferred from X-ray diffraction, 158.
and dielectric constant, 193-4.
and dipole moment, 108.
in the ices, 92.
in liquid, 24, 158, 161, 163, 243.
imperfect in ice I, 78.

Thermal energy, see Enthalpy and Energy.
Thermodynamic properties:

ice, 92-105.
liquid water, 171.
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of models, 178, 261.
vapour, 58-70.
See also Energy, Enthalpy, Entropy,

Heat capacity, and Pressure-volume—
temperature relations.

Transition-state theory:
of dielectric relaxation, 208.
of self-diffusion, 219.

Triple point, 59.
for H2O system, 93.
phase diagram near, 60.

Tritium, 2, 66, 120, 269 ; see also T2O.
Two-state models, 270.

Ultrasonic absorption:
and compressibility, 189.
time scale, 155.
and volume viscosity, 224.

Ultraviolet absorption:
of liquid, 264, 270.
vapour, 6.

Uncoupled stretching bands, 128.
comparison of phases, 234.
conclusions based on, 236.
and distorted hydrogen-bond models,

179, 181, 236, 266.
and hydrogen-bond breaking, 237, 239-

40, 245, 249.
liquid, 231, 241.
and mixture models, 236, 264.
and V-structure, 235.

Unit cell dimensions:
ice I, 72-4.
ice polymorphs, 83.

van der Waals radii, 46, 73.
Vaporization:

thermodynamic constants for, 100.
Vapour pressure:

ice, 59-60.
supercooled water, 60.
water, 60-1.

Vapour saturation curve, 58.
Vapour-like molecules, 241, 264.
Vibrational amplitudes:

in ice I, 77-8.
in vapour, 11.

Vibrations, molecular, 6.
anharmonic constants, 8.
association band:

ice I, 130.
ice polymorphs, 122, 130.
liquid, 229.

bands in vapour, 8, 229.
coupling of, 125-6.
energy of, in vapour, 19-20.
harmonic frequencies, 8.
and heat capacity in ice I, 101.

H-O-H bending:
ice I, 130.
ice polymorphs, 133.
liquid, 229.
vapour, 7.

in ice, 124.
intermolecular, 242.

and heat capacity, 174-5.
ice I, 130-1.
ice polymorphs, 133.
in liquid, 210, 229, 242.

O-H stretching, 7, 231.
ice I, 126.
ice II, 129.
ice polymorphs, 132—5.
liquid, 229, 231.
pure liquid, 241.
vapour, 7.

in vapour, 5—11.
Virial coefficients:

second, 37, 44, 48-54.
third, 54-7.

Viscosity:
shear, of liquid, 222.
volume, of liquid, 224.

Vitreous ice, 89-90, 269.
Volume:

of activation for dielectric relaxation,
114.

changes in ice phase transitions, 95.
of liquid, 62, 185-6, 188.

V-structure, 152, 231, 250.
conclusions from models, 170, 193, 261.
criteria for judging, 265.
definition, 152.
and experimental techniques, 154, 202,

228.
lifetime, 250.
and light scattering, 202, 204.
local, equivalent to a species, 163.
and mixture models, 163, 256.
nature of, 251.
and Raman spectra, 154.

Water, liquid:
chemical shift, 194.
clusters, 48, 57, 164-5, 188, 212-13.
coefficient of expansion, 188.
compressibility, 184—5, 189.
conductivity, 224-7.
configurational properties, 173.
correlation time for angular velocity,

219.
correlation time for reorientation, 112.
density, 62, 170, 183, 185.
dielectric constant, high-frequency, 200,

208-9.
dielectric constant, static, 189, 191.
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Water, liquid (cont.):
dielectric relaxation, 206.
dielectric relaxation time, 205.
dipole moment, 12.
enthalpy, 172.
entropy, 172.
free energy, 172.
heat capacity, 179, 269.
ionic dissociation, 224.
infra-red spectrum, 199, 245, 270.
isotopic composition, 2.
light scattering, 200, 270.
NMB, 195.
neutron scattering, 154, 280.
radial distribution functions, 163.
Raman spectrum, 230.
Rayleigh ratio, 201-2.
refractive index, 197.
reorientations, mechanism, 213.
self-diffusion, 217-22.
species in, 163, 165, 236, 240, 257.
specific refraction, 198.
spin-lattice relaxation time, 214.
supercooling, 270.
tetrahedral coordination, 158, 161, 163.
thermodynamic properties, 171.
ultrasonic absorption, 155.
ultraviolet absorption, 270.
uncoupled stretching bands, 181, 241,

269.
under high pressure, 185.
vibrational properties, 228.
viscosity, shear, 222.
viscosity, volume, 224.
volume, 182.
X-ray diffraction, 155.
See also Anomalous properties, D-struc-

ture, Hydrogen bonds, Models for
liquid, Vibrations, molecular, and
V-structure.

Water molecule:
binding region, 27-31.
bond angle, 4.
bond energy, 3.
bond length, 4.
bond properties, 34.
centrifugal distortion, 6.
dipole moment, 12.
dissociation energy, 3, 19.
electron density, 26—31.
electronic binding energy, 3.
electronic excitation, 6.
energies, comparison, 19.
energy of formation, 2, 19.
field gradient at hydrogen nuclei, 15.
field gradient at oxygen nucleus, 15—16,

136-7.
force constants, 10, 141.

hybrid orbitals, 10, 24.
ionization potentials, 18.
kinetic energy of electrons, 18.
lone-pairs, 24-7.
molecular orbital theory of, 23-7.
moments of inertia, 4.
multipole-expansion model, 32.
normal modes, 7.
nuclear repulsion, 19.
octupole moment, 12—15.
paramagnetic susceptibilities, 15.
point-charge models, 21.
polarizability, 15, 268.
quadrupole moment, 12—15.
<r2>, 6, 14.
Rydberg orbitals, 18.
spin-rotation constants, 268.
total energy, 18.
vibrations, 6—11.
vibrational amplitude, 11.
wave functions for, 31—4.
zero-point energy, 3, 9, 19.
See also Lone-pairs, Models for water

molecule.
Water vapour:

critical constants, 62.
critical region, 61, 63, 64.
dimers, 47, 53-4.
enthalpy, 65, 68.
entropy, 65.
equations of state, 63—5.
forces between molecules, 36—57.
free energy, 65, 69.
ideal gas thermodynamic functions, 65—

7.
pressure—volume-temperature relations,

58-65.
P-V-T surface, 59.
specific heat, 69-70.
specific refraction, 115.
sublimation, 100—1.
thermodynamic properties, 58—70.
vaporization, 100.
vapour pressure, 60—2.
virial coefficients, 48—56.
See also Intermolecular forces, Thermo-

dynamic properties.
Wave functions, 31, 32, 33, 38, 268.

X-ray diffraction:
of liquid, 155, 158, 243.
See also Radial distribution functions,

Ice structures, Unit cell dimensions.

Zero-point energy, 3, 9.
in ice, 138.

Zero-point vibrations:
effect on molecular properties, 268.




